Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Overview

Conditional Variational Capsule Network for Open Set Recognition

arXiv arXiv

This repository hosts the official code related to "Conditional Variational Capsule Network for Open Set Recognition", Y. Guo, G. Camporese, W. Yang, A. Sperduti, L. Ballan, arXiv:2104.09159, 2021. [Download]

alt text

If you use the code/models hosted in this repository, please cite the following paper and give a star to the repo:

@misc{guo2021conditional,
      title={Conditional Variational Capsule Network for Open Set Recognition}, 
      author={Yunrui Guo and Guglielmo Camporese and Wenjing Yang and Alessandro Sperduti and Lamberto Ballan},
      year={2021},
      eprint={2104.09159},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Updates

  • [2021/04/09] - The code is online,
  • [2021/07/22] - The paper has been accepted to ICCV-2021!

Install

Once you have cloned the repo, all the commands below should be runned inside the main project folder cvaecaposr:

# Clone the repo
$ git clone https://github.com/guglielmocamporese/cvaecaposr.git

# Go to the project directory
$ cd cvaecaposr

To run the code you need to have conda installed (version >= 4.9.2).

Furthermore, all the requirements for running the code are specified in the environment.yaml file and can be installed with:

# Install the conda env
$ conda env create --file environment.yaml

# Activate the conda env
$ conda activate cvaecaposr

Dataset Splits

You can find the dataset splits for all the datasets we have used (i.e. for MNIST, SVHN, CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet) in the splits.py file.

When you run the code the datasets will be automatically downloaded in the ./data folder and the split number selected is determined by the --split_num argument specified when you run the main.py file (more on how to run the code in the Experiment section below).

Model Checkpoints

You can download the model checkpoints using the download_checkpoints.sh script in the scripts folder by running:

# Extend script permissions
$ chmod +x ./scripts/download_checkpoints.sh

# Download model checkpoints
$ ./scripts/download_checkpoints.sh

After the download you will find the model checkpoints in the ./checkpoints folder:

  • ./checkpoints/mnist.ckpt
  • ./checkpoints/svhn.ckpt
  • ./checkpoints/cifar10.ckpt
  • ./checkpoints/cifar+10.ckpt
  • ./checkpoints/cifar+50.ckpt
  • ./checkpoints/tiny_imagenet.ckpt

The size of each checkpoint file is between ~370 MB and ~670 MB.

Experiments

For all the experiments we have used a GeForce RTX 2080 Ti (11GB of memory) GPU.

For the training you will need ~7300 MiB of GPU memory whereas for test ~5000 MiB of GPU memory.

Train

The CVAECapOSR model can be trained using the main.py program. Here we reported an example of a training script for the mnist experiment:

# Train
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "" \
      --epochs 100 \
      --mode "train"

For simplicity we provide all the training scripts for the different datasets in the scripts folder. Specifically, you will find:

  • train_mnist.sh
  • train_svhn.sh
  • train_cifar10.sh
  • train_cifar+10.sh
  • train_cifar+50.sh
  • train_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/train_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/train_{dataset}.sh # where you have to set a dataset name

All the temporary files of the training stage (model checkpoints, tensorboard metrics, ...) are created at ./tmp/{dataset}/version_{version_number}/ where the dataset is specified in the train_{dataset}.sh script and version_number is an integer number that is tracked and computed automatically in order to not override training logs (each training will create unique files in different folders, with different versions).

Test

The CVAECapOSR model can be tested using the main.py program. Here we reported an example of a test script for the mnist experiment:

# Test
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "checkpoints/mnist.ckpt" \
      --mode "test"

For simplicity we provide all the test scripts for the different datasets in the scripts folder. Specifically, you will find:

  • test_mnist.sh
  • test_svhn.sh
  • test_cifar10.sh
  • test_cifar+10.sh
  • test_cifar+50.sh
  • test_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/test_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/test_{dataset}.sh # where you have to set a dataset name

Model Reconstruction

Here we reported the reconstruction of some test samples of the model after training.

MNIST
alt text
SVHN
alt text
CIFAR10
alt text
TinyImageNet
alt text
Owner
Guglielmo Camporese
PhD Student in Brain, Mind and Computer Science and Applied Scientist Intern at Amazon. Machine Learning for Videos, Images and Audio Speech contexts.
Guglielmo Camporese
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022