Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Overview

Conditional Variational Capsule Network for Open Set Recognition

arXiv arXiv

This repository hosts the official code related to "Conditional Variational Capsule Network for Open Set Recognition", Y. Guo, G. Camporese, W. Yang, A. Sperduti, L. Ballan, arXiv:2104.09159, 2021. [Download]

alt text

If you use the code/models hosted in this repository, please cite the following paper and give a star to the repo:

@misc{guo2021conditional,
      title={Conditional Variational Capsule Network for Open Set Recognition}, 
      author={Yunrui Guo and Guglielmo Camporese and Wenjing Yang and Alessandro Sperduti and Lamberto Ballan},
      year={2021},
      eprint={2104.09159},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Updates

  • [2021/04/09] - The code is online,
  • [2021/07/22] - The paper has been accepted to ICCV-2021!

Install

Once you have cloned the repo, all the commands below should be runned inside the main project folder cvaecaposr:

# Clone the repo
$ git clone https://github.com/guglielmocamporese/cvaecaposr.git

# Go to the project directory
$ cd cvaecaposr

To run the code you need to have conda installed (version >= 4.9.2).

Furthermore, all the requirements for running the code are specified in the environment.yaml file and can be installed with:

# Install the conda env
$ conda env create --file environment.yaml

# Activate the conda env
$ conda activate cvaecaposr

Dataset Splits

You can find the dataset splits for all the datasets we have used (i.e. for MNIST, SVHN, CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet) in the splits.py file.

When you run the code the datasets will be automatically downloaded in the ./data folder and the split number selected is determined by the --split_num argument specified when you run the main.py file (more on how to run the code in the Experiment section below).

Model Checkpoints

You can download the model checkpoints using the download_checkpoints.sh script in the scripts folder by running:

# Extend script permissions
$ chmod +x ./scripts/download_checkpoints.sh

# Download model checkpoints
$ ./scripts/download_checkpoints.sh

After the download you will find the model checkpoints in the ./checkpoints folder:

  • ./checkpoints/mnist.ckpt
  • ./checkpoints/svhn.ckpt
  • ./checkpoints/cifar10.ckpt
  • ./checkpoints/cifar+10.ckpt
  • ./checkpoints/cifar+50.ckpt
  • ./checkpoints/tiny_imagenet.ckpt

The size of each checkpoint file is between ~370 MB and ~670 MB.

Experiments

For all the experiments we have used a GeForce RTX 2080 Ti (11GB of memory) GPU.

For the training you will need ~7300 MiB of GPU memory whereas for test ~5000 MiB of GPU memory.

Train

The CVAECapOSR model can be trained using the main.py program. Here we reported an example of a training script for the mnist experiment:

# Train
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "" \
      --epochs 100 \
      --mode "train"

For simplicity we provide all the training scripts for the different datasets in the scripts folder. Specifically, you will find:

  • train_mnist.sh
  • train_svhn.sh
  • train_cifar10.sh
  • train_cifar+10.sh
  • train_cifar+50.sh
  • train_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/train_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/train_{dataset}.sh # where you have to set a dataset name

All the temporary files of the training stage (model checkpoints, tensorboard metrics, ...) are created at ./tmp/{dataset}/version_{version_number}/ where the dataset is specified in the train_{dataset}.sh script and version_number is an integer number that is tracked and computed automatically in order to not override training logs (each training will create unique files in different folders, with different versions).

Test

The CVAECapOSR model can be tested using the main.py program. Here we reported an example of a test script for the mnist experiment:

# Test
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "checkpoints/mnist.ckpt" \
      --mode "test"

For simplicity we provide all the test scripts for the different datasets in the scripts folder. Specifically, you will find:

  • test_mnist.sh
  • test_svhn.sh
  • test_cifar10.sh
  • test_cifar+10.sh
  • test_cifar+50.sh
  • test_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/test_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/test_{dataset}.sh # where you have to set a dataset name

Model Reconstruction

Here we reported the reconstruction of some test samples of the model after training.

MNIST
alt text
SVHN
alt text
CIFAR10
alt text
TinyImageNet
alt text
Owner
Guglielmo Camporese
PhD Student in Brain, Mind and Computer Science and Applied Scientist Intern at Amazon. Machine Learning for Videos, Images and Audio Speech contexts.
Guglielmo Camporese
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022