Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

Related tags

Deep LearningATLOP
Overview

ATLOP

Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling.

If you make use of this code in your work, please kindly cite the following paper:

@inproceedings{zhou2021atlop,
	title={Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling},
	author={Zhou, Wenxuan and Huang, Kevin and Ma, Tengyu and Huang, Jing},
	booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
	year={2021}
}

Requirements

  • Python (tested on 3.7.4)
  • CUDA (tested on 10.2)
  • PyTorch (tested on 1.7.0)
  • Transformers (tested on 3.4.0)
  • numpy (tested on 1.19.4)
  • apex (tested on 0.1)
  • opt-einsum (tested on 3.3.0)
  • wandb
  • ujson
  • tqdm

Dataset

The DocRED dataset can be downloaded following the instructions at link. The CDR and GDA datasets can be obtained following the instructions in edge-oriented graph. The expected structure of files is:

ATLOP
 |-- dataset
 |    |-- docred
 |    |    |-- train_annotated.json        
 |    |    |-- train_distant.json
 |    |    |-- dev.json
 |    |    |-- test.json
 |    |-- cdr
 |    |    |-- train_filter.data
 |    |    |-- dev_filter.data
 |    |    |-- test_filter.data
 |    |-- gda
 |    |    |-- train.data
 |    |    |-- dev.data
 |    |    |-- test.data
 |-- meta
 |    |-- rel2id.json

Training and Evaluation

DocRED

Train the BERT model on DocRED with the following command:

>> sh scripts/run_bert.sh  # for BERT
>> sh scripts/run_roberta.sh  # for RoBERTa

The training loss and evaluation results on the dev set are synced to the wandb dashboard.

The program will generate a test file result.json in the official evaluation format. You can compress and submit it to Colab for the official test score.

CDR and GDA

Train CDA and GDA model with the following command:

>> sh scripts/run_cdr.sh  # for CDR
>> sh scripts/run_gda.sh  # for GDA

The training loss and evaluation results on the dev and test set are synced to the wandb dashboard.

Saving and Evaluating Models

You can save the model by setting the --save_path argument before training. The model correponds to the best dev results will be saved. After that, You can evaluate the saved model by setting the --load_path argument, then the code will skip training and evaluate the saved model on benchmarks. I've also released the trained atlop-bert-base and atlop-roberta models.

Comments
  • The results of ATLOP based on the bert-base-cased model on the DocRED dataset

    The results of ATLOP based on the bert-base-cased model on the DocRED dataset

    Hello, I retrained ATLOP based on the bert-base-cased model on the DocRED dataset. However, the max F1 and F1_ign score on the dev dataset is 58.81 and 57.09, respectively. However, these scores are much lower than the reported score in your paper (61.09, 59.22). Is the default model config correct? My environment is as follows: Best regards

    Python 3.7.8
    PyTorch 1.4.0
    Transformers 3.3.1
    apex 0.1
    opt-einsum 3.3.0
    
    opened by donghaozhang95 11
  • The main purpose of the function: get_label

    The main purpose of the function: get_label

    Hi @wzhouad ,

    Thanks so much for releasing your source code. I only wonder about the main purpose of the function get_label() in the file losses.py in calculating the final loss. Could you please explain it? Thanks for your help!

    opened by angelotran05 5
  • model.py

    model.py

    When I run train.py, there is an err in model.py:

    line 45, in get_hrt e_att.append(attention[i, :, start + offset])
    IndexError: too many indices for tensor of dimension 1

    Thanks.

    opened by qiunlp 5
  • Mention embedding

    Mention embedding

    Hi there, thanks for your nice work. I'm a bit confused that in the function get_hrt(), do you use the embedding of the first subword token as the mention embedding instead of summing up all the wordpieces? So the offset used here is due to the insertion of especial token "*" ? Please correct me if I'm wrong, thanks!

    opened by mk2x15 4
  • about the labels

    about the labels

    I see there a line of code before output the loss that is if labels is not None: labels = [torch.tensor(label) for label in labels] labels = torch.cat(labels, dim=0).to(logits) loss = self.loss_fnt(logits.float(), labels.float()) output = (loss.to(sequence_output),) + output

    and i also tried why sometimes the label could be none??? am I got something wrong?

    opened by ChristopherAmadeusMiao 4
  • The best results of same random seed are different at each time  when I trained the ATLOP

    The best results of same random seed are different at each time when I trained the ATLOP

    Hello I trained the ATLOP with same random seed=66 every time, but the final best result are different. Have you met the same situation before? thank you for your replying.

    opened by Lanyu123 4
  • Any plans to release the codes for CDR?

    Any plans to release the codes for CDR?

    Hello Zhou

    Thank you for releasing the codes of your work. In your paper, it has the experiment results on CDR. I want to reproduce the performance using the CDR dataset on your approach. Do you have any plans to release the codes for CDR?

    opened by mjeensung 4
  • About the process_long_input.py

    About the process_long_input.py

    I got the error, could you help me ? thank you!

    Traceback (most recent call last): File "train.py", line 228, in main() File "train.py", line 216, in main train(args, model, train_features, dev_features, test_features) File "train.py", line 74, in train finetune(train_features, optimizer, args.num_train_epochs, num_steps) File "train.py", line 38, in finetune outputs = model(**inputs) File "D:\Anaconda\envs\pytorch-GPU\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "D:\code\ATLOP\model.py", line 95, in forward sequence_output, attention = self.encode(input_ids, attention_mask) File "D:\code\ATLOP\model.py", line 32, in encode sequence_output, attention = process_long_input(self.model, input_ids, attention_mask, start_tokens, end_tokens) File "D:\code\ATLOP\long_seq.py", line 17, in process_long_input output_attentions=True, File "D:\Anaconda\envs\pytorch-GPU\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) TypeError: forward() got an unexpected keyword argument 'output_attentions'

    opened by MingYang1127 3
  • Can you please release trained model?

    Can you please release trained model?

    Hi. Thank you for releasing the codes of your model, it is really helpful.

    However I tried to retrain ATLOP based on the bert-base-cased model on the DocRED dataset but I can't get high result as your result on the paper. And I can't retrain roberta-large model because I don't have strong enough GPU (strongest GPU on Google Colab is V100). So can you please release your trained model. I would be very very happy if you can release your model, and I believe that it can help many other people, too.

    Thank you so much.

    opened by nguyenhuuthuat09 3
  • Where did the

    Where did the "/meta/rel2id.json" come from?

    I only want to use DocRED dataset,and there is only "rel_info.json" in it. Could you please tell me how can I get rel2id.json?I try to rename rel_info.json to rel2id.json but ValueError: invalid literal for int() with base 10: 'headquarters location' occured in File "train.py", line 197, in main train_features = read(train_file, tokenizer, max_seq_length=args.max_seq_length) File "/home/kw/ATLOP/prepro.py", line 56, in read_docred r = int(docred_rel2id[label['r']]) Thanks for your attention,I'm waiting for your reply.

    opened by AQA6666 2
  • How should I be running the Enhanced BERT Baseline model?

    How should I be running the Enhanced BERT Baseline model?

    Hi. I recently tried to run the Enhanced BERT Baseline model (i.e., without adaptive threshold loss and local contextualized pooling) and just wanted to confirm if I'm doing it right.

    Basically, in model.py lines 86-111 (i.e., the forward method) I modified the code so that I don't use rs and changed self.head_extractor and self.tail_extractor to have in_features and out_features accordingly. I did this because I'm assuming that within the get_hrt method, rs is what LOP is since we're using attention there. Modifying the extractors also implies that I'm not concatenating hs and ts with rs.

    After that I changed loss_fnt to be a simple nn.BCEWithLogitsLoss rather than ATLoss. That means I also changed the get_label method within ATLoss to be a function so that I'm not depending on the class.

    Am I doing this right? Or is there another way that I should be implementing it?

    The reason why I'm suspicious as to whether I implemented this correctly or not is because I'm currently running the code on the TACRED dataset rather than the DocRED dataset, and while ATLOP itself shows satisfactory performance the performance of the Enhanced BERT Baseline is much lower.

    Thanks.

    opened by seanswyi 2
  • The usage of the ATLoss

    The usage of the ATLoss

    Thanks for your amazing work! I am very interested in the ATLoss, but there is a little question I want to ask. When using the ATLoss, should we add a no-relation label? For example, there are 26 relation types, the gold labels may contain multiple relation types, but at least one relation type. How to represent the no-relation? Show I create a tensor of size 27 and set the first label 1 or a tensor of size 26 and set all the labels zero? Look forward to your reply. Many Thanks,

    opened by Onion12138 0
  • --save_path issue

    --save_path issue

    I edit the script file and add --save_path followed by the directory. I can't see any saved models after running the script. Could you please explain how to save a model in detail?

    opened by rijukandathil 0
Owner
Wenxuan Zhou
Ph.D. student at University of Southern California
Wenxuan Zhou
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022