monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

Overview

monolish: MONOlithic LIner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.


monolish let developer forget about:

  • Performance tuning
  • Processor differences which execute library (Intel CPU, NVIDIA GPU, AMD CPU, ARM CPU, NEC SX-Aurora TSUBASA, etc.)
  • Vendor specific data transfer APIs (host RAM to Device RAM)
  • Finding bottlenecks and performance benchmarks
  • The argument data type of matrix/vector operations
  • Matrix structures and storage formats
  • Cumbersome package dependency

License

Copyright 2021 RICOS Co. Ltd.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Comments
  • It seems that the `Dense(M, N, min, max)` constructor is not completely random.

    It seems that the `Dense(M, N, min, max)` constructor is not completely random.

    Running the following simple program

    #include <iostream>
    #include <monolish_blas.hpp>
    
    int main() {
      monolish::matrix::Dense<double>x(2, 3, 0.0, 10.0);
      x.print_all();
      return 0;
    }
    
    $ g++ -O3 main.cpp -o main.out -lmonolish_cpu
    

    will produce results like this.

    [email protected]:/$ ./main.out
    1 1 5.27196
    1 2 2.82358 <--
    1 3 2.13893 <--
    2 1 9.72054
    2 2 2.82358 <--
    2 3 2.13893 <--
    [email protected]:/$ ./main.out
    1 1 5.3061
    1 2 9.75236
    1 3 7.15652
    2 1 5.28961
    2 2 2.05967
    2 3 0.59838
    [email protected]:/$ ./main.out
    1 1 9.33149 <--
    1 2 4.75639 <--
    1 3 8.71093 <--
    2 1 9.33149 <--
    2 2 4.75639 <--
    2 3 8.71093 <--
    

    The arrows (<--) indicate that the number is repeating.

    This is probably due to that the pseudo-random number generator does not split well when it is parallelized by OpenMP.

    https://github.com/ricosjp/monolish/blob/1b89942e869b7d0acd2d82b4c47baeba2fbdf3e6/src/utils/dense_constructor.cpp#L120-L127

    This may happen not only with Dense, but also with random constructors of other data structures.

    I tested this on docker image ghcr.io/ricosjp/monolish/mkl:0.14.1.

    opened by lotz84 5
  • impl. transpose matvec, matmul

    impl. transpose matvec, matmul

    I want to give modern and intuitive transposition information. But I have no idea how to implement it easily.

    First, we create the following function as a prototype

    matmul(A,B,C) // C=AB
    matmul_TNN(A, B, C); // C=A^TB
    matvec(A,x,y); // y = Ax
    matvec_T(A, x, y); // y=A^Tx
    

    This interface is not beautiful. However, it has the following advantages

    • It does not affect other functions.
    • Easy to trace with logger
    • Simple to implement FFI in the future.
    • When beautiful ideas appear in the future, these functions can be implemented wrapping it.
    opened by t-hishinuma 2
  • try -fopenmp-cuda-mode flag

    try -fopenmp-cuda-mode flag

    memo:

    Clang supports two data-sharing models for Cuda devices: Generic and Cuda modes. The default mode is Generic. Cuda mode can give an additional performance and can be activated using the -fopenmp-cuda-mode flag. In Generic mode all local variables that can be shared in the parallel regions are stored in the global memory. In Cuda mode local variables are not shared between the threads and it is user responsibility to share the required data between the threads in the parallel regions.

    https://clang.llvm.org/docs/OpenMPSupport.html#basic-support-for-cuda-devices

    opened by t-hishinuma 2
  • Reserch the effect of the level information of the performance of cusparse ILU precondition

    Reserch the effect of the level information of the performance of cusparse ILU precondition

    The level information may not improve the performance but spend extra time doing analysis. For example, a tridiagonal matrix has no parallelism. In this case, CUSPARSE_SOLVE_POLICY_NO_LEVEL performs better than CUSPARSE_SOLVE_POLICY_USE_LEVEL. If the user has an iterative solver, the best approach is to do csrsv2_analysis() with CUSPARSE_SOLVE_POLICY_USE_LEVEL once. Then do csrsv2_solve() with CUSPARSE_SOLVE_POLICY_NO_LEVEL in the first run and with CUSPARSE_SOLVE_POLICY_USE_LEVEL in the second run, picking faster one to perform the remaining iterations.

    https://docs.nvidia.com/cuda/cusparse/index.html#csric02

    opened by t-hishinuma 2
  •  ignoring return value in test

    ignoring return value in test

    matrix_transpose.cpp:60:3: warning: ignoring return value of 'monolish::matrix::COO<Float>& monolish::matrix::COO<Float>::transpose() [with Float = double]', declared with attribute nodiscard [-Wunused-result]
       60 |   A.transpose();
    
    opened by t-hishinuma 2
  • Automatic deploy at release

    Automatic deploy at release

    impl. in github actions

    • [x] generate Doxyben (need to chenge version name)
    • [x] generate deb file
    • [x] generate monolish docker

    need to get version number...

    opened by t-hishinuma 2
  • write how to install nvidia-docker

    write how to install nvidia-docker

    distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee > /etc/apt/sources.list.d/nvidia-docker.list
    sudo apt update -y
    sudo apt install -y nvidia-docker2
    sudo systemctl restart docker
    
    opened by t-hishinuma 1
  • Resolve conflict of libmonolish-cpu and libmonolish-nvidia-gpu deb package

    Resolve conflict of libmonolish-cpu and libmonolish-nvidia-gpu deb package

    What conflicts?

    libomp.so is contained in both package

    How to resolve?

    • (a) Use libomp5-12 distributed by ubuntu
    • (b) Create another package of libomp in allgebra stage (libomp-allgebra)
    opened by termoshtt 1
  • resolve curse of type name in src/

    resolve curse of type name in src/

    In src/, int and size_t are written. When change the class or function declarations in include/, I don't want to rewrite src/. Use auto or decltype() to remove them.

    opened by t-hishinuma 1
  • LLVM OpenMP Offloading can be installed by apt?

    LLVM OpenMP Offloading can be installed by apt?

    docker run -it --gpus all -v $PWD:/work nvidia/cuda:11.7.0-devel-ubuntu22.04
    ==
    apt update -y
    apt install -y git intel-mkl cmake ninja-build ccache clang clang-tools libomp-14-dev gcc gfortran
    git config --global --add safe.directory /work
    cd /work; make gpu
    

    pass??

    opened by t-hishinuma 0
  • cusparse IC / ILU functions is deprecated

    cusparse IC / ILU functions is deprecated

    but, sample code of cusparse is not updated

    https://docs.nvidia.com/cuda/cusparse/index.html#csric02

    I dont like trial and error, so wait for the sample code to be updated.

    opened by t-hishinuma 0
Releases(0.17.0)
Owner
RICOS Co. Ltd.
株式会社科学計算総合研究所 / Research Institute for Computational Science Co. Ltd.
RICOS Co. Ltd.
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023