50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

Overview

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm still looking for new contributors! Please help make HyperLearn no1!!]

drawing

HyperLearn is what drives Umbra's AI engines. It is open source to everyone, everywhere, and we hope humanity can rise to the stars.

[Notice - I will be updating the package monthly or bi-weekly due to other commitments]


drawing https://hyperlearn.readthedocs.io/en/latest/index.html

Faster, Leaner GPU Sklearn, Statsmodels written in PyTorch

GitHub issues Github All Releases

50%+ Faster, 50%+ less RAM usage, GPU support re-written Sklearn, Statsmodels combo with new novel algorithms.

HyperLearn is written completely in PyTorch, NoGil Numba, Numpy, Pandas, Scipy & LAPACK, and mirrors (mostly) Scikit Learn. HyperLearn also has statistical inference measures embedded, and can be called just like Scikit Learn's syntax (model.confidence_interval_) Ongoing documentation: https://hyperlearn.readthedocs.io/en/latest/index.html

I'm also writing a mini book! A sneak peak: drawing

drawing

Comparison of Speed / Memory

Algorithm n p Time(s) RAM(mb) Notes
Sklearn Hyperlearn Sklearn Hyperlearn
QDA (Quad Dis A) 1000000 100 54.2 22.25 2,700 1,200 Now parallelized
LinearRegression 1000000 100 5.81 0.381 700 10 Guaranteed stable & fast

Time(s) is Fit + Predict. RAM(mb) = max( RAM(Fit), RAM(Predict) )

I've also added some preliminary results for N = 5000, P = 6000 drawing

Since timings are not good, I have submitted 2 bug reports to Scipy + PyTorch:

  1. EIGH very very slow --> suggesting an easy fix #9212 https://github.com/scipy/scipy/issues/9212
  2. SVD very very slow and GELS gives nans, -inf #11174 https://github.com/pytorch/pytorch/issues/11174

Help is really needed! Message me!


Key Methodologies and Aims

1. Embarrassingly Parallel For Loops

2. 50%+ Faster, 50%+ Leaner

3. Why is Statsmodels sometimes unbearably slow?

4. Deep Learning Drop In Modules with PyTorch

5. 20%+ Less Code, Cleaner Clearer Code

6. Accessing Old and Exciting New Algorithms


1. Embarrassingly Parallel For Loops

  • Including Memory Sharing, Memory Management
  • CUDA Parallelism through PyTorch & Numba

2. 50%+ Faster, 50%+ Leaner

3. Why is Statsmodels sometimes unbearably slow?

  • Confidence, Prediction Intervals, Hypothesis Tests & Goodness of Fit tests for linear models are optimized.
  • Using Einstein Notation & Hadamard Products where possible.
  • Computing only what is necessary to compute (Diagonal of matrix and not entire matrix).
  • Fixing the flaws of Statsmodels on notation, speed, memory issues and storage of variables.

4. Deep Learning Drop In Modules with PyTorch

  • Using PyTorch to create Scikit-Learn like drop in replacements.

5. 20%+ Less Code, Cleaner Clearer Code

  • Using Decorators & Functions where possible.
  • Intuitive Middle Level Function names like (isTensor, isIterable).
  • Handles Parallelism easily through hyperlearn.multiprocessing

6. Accessing Old and Exciting New Algorithms

  • Matrix Completion algorithms - Non Negative Least Squares, NNMF
  • Batch Similarity Latent Dirichelt Allocation (BS-LDA)
  • Correlation Regression
  • Feasible Generalized Least Squares FGLS
  • Outlier Tolerant Regression
  • Multidimensional Spline Regression
  • Generalized MICE (any model drop in replacement)
  • Using Uber's Pyro for Bayesian Deep Learning

Goals & Development Schedule

Will Focus on & why:

1. Singular Value Decomposition & QR Decomposition

* SVD/QR is the backbone for many algorithms including:
    * Linear & Ridge Regression (Regression)
    * Statistical Inference for Regression methods (Inference)
    * Principal Component Analysis (Dimensionality Reduction)
    * Linear & Quadratic Discriminant Analysis (Classification & Dimensionality Reduction)
    * Pseudoinverse, Truncated SVD (Linear Algebra)
    * Latent Semantic Indexing LSI (NLP)
    * (new methods) Correlation Regression, FGLS, Outlier Tolerant Regression, Generalized MICE, Splines (Regression)

On Licensing: HyperLearn is under a GNU v3 License. This means:

  1. Commercial use is restricted. Only software with 0 cost can be released. Ie: no closed source versions are allowed.
  2. Using HyperLearn must entail all of the code being avaliable to everyone who uses your public software.
  3. HyperLearn is intended for academic, research and personal purposes. Any explicit commercialisation of the algorithms and anything inside HyperLearn is strictly prohibited.

HyperLearn promotes a free and just world. Hence, it is free to everyone, except for those who wish to commercialise on top of HyperLearn. Ongoing documentation: https://hyperlearn.readthedocs.io/en/latest/index.html [As of 2020, HyperLearn's license has been changed to BSD 3]

Owner
Daniel Han-Chen
Fast energy efficient machine learning algorithms
Daniel Han-Chen
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022