Free MLOps course from DataTalks.Club

Overview

MLOps Zoomcamp

Our MLOps Zoomcamp course

Overview

Objective

Teach practical aspects of productionizing ML services — from collecting requirements to model deployment and monitoring.

Target audience

Data scientists and ML engineers. Also software engineers and data engineers interested in learning about putting ML in production.

Pre-requisites

  • Python
  • Docker
  • Being comfortable with command line
  • Prior exposure to machine learning (at work or from other courses, e.g. from ML Zoomcamp)
  • Prior programming experience (at least 1+ year)

Timeline

Course start: 16 of May

Syllabus

This is a draft and will change.

Module 1: Introduction

  • What is MLOps
  • MLOps maturity model
  • Running example: NY Taxi trips dataset
  • Why do we need MLOps
  • Course overview
  • Environment preparation
  • Homework

More details

Module 2: Experiment tracking and model management

  • Experiment tracking intro
  • Getting started with MLflow
  • Experiment tracking with MLflow
  • Saving and loading models with MLflow
  • Model registry
  • MLflow in practice
  • Homework

More details

Module 3: Orchestration and ML Pipelines

  • ML Pipelines: introduction
  • Prefect
  • Turning a notebook into a pipeline
  • Kubeflow Pipelines
  • Homework

Module 4: Model Deployment

  • Batch vs online
  • For online: web services vs streaming
  • Serving models in Batch mode
  • Web services
  • Streaming (Kinesis/SQS + AWS Lambda)
  • Homework

Module 5: Model Monitoring

  • ML monitoring vs software monitoring
  • Data quality monitoring
  • Data drift / concept drift
  • Batch vs real-time monitoring
  • Tools: Evidently, Prometheus and Grafana
  • Homework

Module 6: Best Practices

  • Devops
  • Virtual environments and Docker
  • Python: logging, linting
  • Testing: unit, integration, regression
  • CI/CD (github actions)
  • Infrastructure as code (terraform, cloudformation)
  • Cookiecutter
  • Makefiles
  • Homework

Module 7: Processes

  • CRISP-DM, CRISP-ML
  • ML Canvas
  • Data Landscape canvas
  • MLOps Stack Canvas
  • Documentation practices in ML projects (Model Cards Toolkit)

Project

  • End-to-end project with all the things above

Running example

To make it easier to connect different modules together, we’d like to use the same running example throughout the course.

Possible candidates:

Instructors

  • Larysa Visengeriyeva
  • Cristian Martinez
  • Kevin Kho
  • Theofilos Papapanagiotou
  • Alexey Grigorev
  • Emeli Dral
  • Sejal Vaidya

Other courses from DataTalks.Club:

FAQ

I want to start preparing for the course. What can I do?

If you haven't used Flask or Docker

If you have no previous experience with ML

  • Check Module 1 from ML Zoomcamp for an overview
  • Module 3 will also be helpful if you want to learn Scikit-Learn (we'll use it in this course)
  • We'll also use XGBoost. You don't have to know it well, but if you want to learn more about it, refer to module 6 of ML Zoomcamp

I registered but haven't received an invite link. Is it normal?

Yes, we haven't automated it. You'll get a mail from us eventually, don't worry.

If you want to make sure you don't miss anything:

Is it going to be live?

No and yes. There will be two parts:

  • Lectures: Pre-recorded, you can watch them when it's convenient for you.
  • Office hours: Live on Mondays (17:00 CET), but recorded, so you can watch later.

Supporters and partners

Thanks to the course sponsors for making it possible to create this course

Thanks to our friends for spreading the word about the course

Owner
DataTalksClub
The place to talk about data
DataTalksClub
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022