Tools for Optuna, MLflow and the integration of both.

Overview

HPOflow - Sphinx DOC

DOC MIT License Contributor Covenant Python Version pypi
pytest status Static Code Checks status Build & Deploy Doc GitHub issues

Tools for Optuna, MLflow and the integration of both.

Detailed documentation with examples can be found here: Sphinx DOC

Table of Contents

Maintainers

One Conversation
This project is maintained by the One Conversation team of Deutsche Telekom AG.

The main components are:

Installation

HPOflow is available at the Python Package Index (PyPI). It can be installed with pip:

$ pip install hpoflow

Some additional dependencies might be necessary.

To use hpoflow.optuna_mlflow.OptunaMLflow:

$ pip install mlflow GitPython

To use hpoflow.optuna_transformers.OptunaMLflowCallback:

$ pip install mlflow GitPython transformers

To install all optional dependencies use:

$ pip install hpoflow[optional]

Support and Feedback

The following channels are available for discussions, feedback, and support requests:

Reporting Security Vulnerabilities

This project is built with security and data privacy in mind to ensure your data is safe. We are grateful for security researchers and users reporting a vulnerability to us, first. To ensure that your request is handled in a timely manner and non-disclosure of vulnerabilities can be assured, please follow the below guideline.

Please do not report security vulnerabilities directly on GitHub. GitHub Issues can be publicly seen and therefore would result in a direct disclosure.

Please address questions about data privacy, security concepts, and other media requests to the [email protected] mailbox.

Contribution

Our commitment to open source means that we are enabling - in fact encouraging - all interested parties to contribute and become part of our developer community.

Contribution and feedback is encouraged and always welcome. For more information about how to contribute, as well as additional contribution information, see our Contribution Guidelines.

Code of Conduct

This project has adopted the Contributor Covenant as our code of conduct. Please see the details in our Contributor Covenant Code of Conduct. All contributors must abide by the code of conduct.

Licensing

Copyright (c) 2021 Philip May, Deutsche Telekom AG
Copyright (c) 2021 Philip May
Copyright (c) 2021 Timothy Wolff-Piggott

Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file LICENSE in the repository.

Comments
  • review README.md and CONTRIBUTING.md

    review README.md and CONTRIBUTING.md

    Review README.md and CONTRIBUTING.md

    • is there something missing? maybe compare with optuna and transformers
    • spelling
    • idiomatic english
    • consistency
    • correctness
    • links ok?
    • ...

    PS: The real documentation is still missing and a know issue.

    opened by PhilipMay 12
  • add typing in optuna_transformers

    add typing in optuna_transformers

    @twolffpiggott can you please tell me the type of this?

    https://github.com/telekom/HPOflow/blob/e2b0943218af419a79ce95e60b67c9a4c2477349/hpoflow/optuna_transformers.py#L47

    opened by PhilipMay 6
  • add `transformers.py`

    add `transformers.py`

    @twolffpiggott should we add this here or to an other project we open source?

    https://github.com/PhilipMay/mltb/blob/master/mltb/integration/transformers.py

    enhancement 
    opened by PhilipMay 6
  • Create Sphinx documentation page

    Create Sphinx documentation page

    • [x] setup
    • [x] make GH action
    • [x] setup page
    • [x] change styling to telekom style
    • switch to MD
    • [x] add more content
    • [x] link from README to page
    • [x] link from pypi to GH page
    • [x] add impressum
    • [x] remove strange mouse over image effect
    • add version info
    documentation 
    opened by PhilipMay 4
  • Problems with direct `_imports.check()` call

    Problems with direct `_imports.check()` call

    When the __init__.py imports OMLflowCallback the optuna_transformers.py script is executed. That executes the _imports.check() call which then throws an exception if transformers or mlflow is not installed. But that should be avoided.

    See here: https://github.com/telekom/HPOflow/blob/d1cce5cbc2a84634d1484a053286000dda05b681/hpoflow/optuna_transformers.py#L11-L17

    The solution would be to put the _imports.check() call into the constructor. But that is not possible because OMLflowCallback inherits from transformers.

    The only solution I have is to put OMLflowCallback into an factory function that creates an OMLflowCallback and does the _imports.check() in there.

    @twolffpiggott what do you think?

    bug 
    opened by PhilipMay 3
  • Flake8 ignore list for Black compatibility

    Flake8 ignore list for Black compatibility

    Flake8 raises a warning for "E203" when it encounters a Black decision to insert whitespace before : in slicing syntax.

    Black's behaviour is more correct here, so my suggestion is to add "E203" to the flake8 config ignore list.

    i.e. in setup.cfg:

    [flake8]
    ...
    extend-ignore = E203
    opened by twolffpiggott 3
  • Simple Example?

    Simple Example?

    I don't understand how to use this package. Could you provide a basic example? I don't understand the import_structure and how it relates to importing the modules? Thanks

    opened by jmrichardson 2
  • WIP prefix in contrib file

    WIP prefix in contrib file

    Should this

    Create Work In Progress [WIP] pull requests only if you need clarification or an explicit review before you can continue your work item.

    be more like this

    Add a [WIP] prefix on your pull request name if you need clarification or an explicit review before you can continue your work item.

    documentation 
    opened by PhilipMay 2
Releases(0.1.4)
Owner
Telekom Open Source Software
published by Deutsche Telekom AG and partner companies
Telekom Open Source Software
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023