Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Overview

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku

Portada

La creación de un proyecto de aprendizaje automático en un jupyter notebook ejecutaándose en local para unos datos de entrada controlados es una cosa, pero implementar el modelo como una aplicación web y su posterior puesta en producción como servicio para usuarios en la red es otra cosa muy distinta.

Para que un producto basado en el aprendizaje automático tenga éxito, es necesario crear servicios que otros equipos puedan usar o un producto donde los usuarios puedan interactuar. Para ello, el objetivo final es brindar el modelo como un servicio, basándose en un concepto llamado API. Una API es la forma en que los sistemas informáticos se comunican entre sí, actuando como un agente que lleva la información del usuario al servidor y luego nuevamente del servidor al usuario devolviendo la respuesta. Flask proporciona esa capacidad, actuando como una API entre su modelo y el archivo HTML.

Por otra parte utilizaremos Heroku como plataforma en la nube para crear nuestro servicio. Heroku es uno de los PaaS más utilizados en la actualidad en entornos empresariales por su fuerte enfoque en resolver el despliegue de una aplicación. Ademas te permite manejar los servidores y sus configuraciones, escalamiento y la administración. A Heroku solo le dices qué lenguaje de backend estás utilizando (Python, Java, PHP, NodeJS…) o qué base de datos vas a utilizar y te preocupas únicamente por el desarrollo de tu aplicación. Heroku es gratuito para aplicaciones de poco consumo y posteriormente hablaremos de como crear una cuenta gratuita para desplegar nuestro servicio.

Introducción a la Aplicación a desarrollar.

Como hemos comentado, el objetivo de este artículo es crear un modelo de aprendizaje automático alojado en un servidor web que nos preste el servicio de hacer predicciones vía http. Para ello vamos a estructura el proyecto en 4 partes:

  • Entorno de desarrollo.
  • Implementación y entrenamiento del Modelo.
  • Implementación de la API en Flask.
  • Despliegue del servicio web en Heroku

Entorno de desarrollo

Antes que nada vamos a necesitar preparar el entorno de desarrollo para la implementación de la aplicación. Para ello primero procedemos a clonar el repositorio base donde os he dejado preparado todo el código necesario para el desarrollo de esta práctica.

cd you_proyect
git clone https://github.com/jaisenbe58r/Iris_Heroku.git

El proyecto se estructura de la siguiente manera:

your proyect
-- checkpoints
---- model.pkl
-- images
-- model
---- model.py
-- templates
---- index.html
---- result.html
-- .gitignore
-- .slugignore
-- Procfile
-- readme.md
-- requirements.txt
-- script.py

En el directorio de su proyecto, comencemos creando un virtualenv:

python -m venv venv/

Y activemos con el el entorno virtual:

\env\Scripts\activate.bat

Instalamos todas las dependencias del proyecto:

pip install -r requirements.txt

Con esto ya tendríamos preparado todo el entorno para el desarrollo de nuestra aplicación.

Implementación y entrenamiento del Modelo.

El modelo de aprendizaje automático va ser el encargado de clasificar entre 3 variedades de Flor de Iris. estas variedades o clases son:

  • Iris Setosa
  • Iris Versicolour
  • Iris Virginica

Esta clasificación será el resultado de la inferencia de unos datos de entrada introducidos por el usuario:

  • largo del sépalo en cm
  • ancho del sépalo en cm
  • largo de pétalo en cm
  • ancho de pétalo en cm

Puede encontrar más información sobre el dataset en el siguiente enlace: https://archive.ics.uci.edu/ml/datasets/iris

En nuestro caso utilizaremos el módulo datasets de la librería ```sklearn`` y lo dividimos entre conjuntos de entrenamiento y test:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

Vamos a utilizar como modelo un RandomForestClassifier() entrenado con el subconjunto de entrenamiento y validado con el conjunto de test.

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

clf = RandomForestClassifier()
print(clf.fit(X_train, y_train).score(X_test, y_test))

>>> 0.933

Posteriormente al entrenamiento, serializamos el modelo y lo guardamos en la carpeta checkpoints/.

filename = 'checkpoints/model.pkl'
pickle.dump(clf, open(filename, 'wb'))

No está de mal, validar estos pasos cargando el modelo y hacer una nueva predicción con el mismo conjunto de test para validar los resultados

loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.score(X_test, y_test)
print(result)

>>> 0.933

También comprobamos a hacer una predicción con datos reales para ver la respuesta:

print(loaded_model.predict([[5.6, 2.7, 4.2, 1.3]]))

>>> [1]

Con esto, ya tenemos el modelo preparado para servirlo desde una API.

Implementación de la API en Flask.

Comenzamos por explicar en base a una aplicación Flask más simple:

from flask import Flask

app=Flask(__name__)

@app.route('/',methods=['GET','POST'])
def main():
    return str('Hello World!! ')

if __name__=="__main__":
    app.run()

Explicando las líneas más importantes tenemos:

app=Flask(__name__)

Aquí, estamos asignando el constructor Flask a una variable que necesitamos para ejecutar todos los procesos.

@app.route('/',methods=['GET','POST'])

app.route() es un decorador en Python. En Flask, cada función se activará cuando vaya a una página específica, todo el tráfico en esta URL invocará la función main().

Con esto bastaría para realizar su primera aplicación Flask. En nuestro caso necesitamos que la función main() fuera una función que desplegará el modelo para hacer las predicciones de los inputs recibidos por el método POST. Para ello, utilizamos una función definida como result()que se encargará de recoger los inputs de entrada al modelo, transformarlos a una lista acorde a lo esperado por el modelo para posteriormente llamar a la función value_predictor()donde se realizarán las predicciones. Una vez tengamos los resultados, se mostrarán en el template result.html como podemos ver más adelante.

#importing libraries
import os
import numpy as np
import flask
import pickle
from flask import Flask, render_template, request

#creating instance of the class
app=Flask(__name__)

#to tell flask what url shoud trigger the function index()
@app.route('/')
@app.route('/index')
def index():
    return flask.render_template('index.html')

def ValuePredictor(to_predict_list):
    to_predict = np.array(to_predict_list).reshape(1, 4)
    loaded_model = pickle.load(open("checkpoints/model.pkl","rb"))
    result = loaded_model.predict(to_predict)
    return result[0]

@app.route('/result', methods = ['POST'])
def result():
    if request.method == 'POST':
        to_predict_list = request.form.to_dict()
        to_predict_list = list(to_predict_list.values())
        try:
            to_predict_list = list(map(float, to_predict_list))
            result = ValuePredictor(to_predict_list)
            if int(result)==0:
                prediction='Iris-Setosa'
            elif int(result)==1:
                prediction='Iris-Virginica'
            elif int(result)==2:
                prediction='Iris-Versicolour'
            else:
                prediction=f'{int(result)} No-definida'
        except ValueError:
            prediction='Error en el formato de los datos'

        return render_template("result.html", prediction=prediction)

if __name__=="__main__":

    app.run(port=5001)

Como particularidad, podemos observar en el código siguiente que disponemos de dos rutas, /index y result, la primera se lanzará nada más se despliegue la API y es la encargada de recoger los datos a a partir del template index.html:

index_html

Una vez completados los campos, se pulsa el botón submit que nos enviará a la ruta /result donde se desplegará el template result.html con el resultado final de la predicción:

result_html

Para probar nuestra API en local bastaría con ejecutar el script y acceder la la URL proporcionada por consola:

python script.py

consola

Despliegue del servicio web en Heroku

Como hemos comentado en la introducción, Heroku es una plataforma como servicio (PaaS) que permite a los desarrolladores crear, ejecutar y operar aplicaciones completamente en la nube en lugar de hacerlo localmente en su máquina. En este proyecto lo implementaremos usando GitHub automáticamente cada vez que hagamos un pull a la rama deploy

Antes de implementar su código, debemos crear una cuenta en Heroku:

heroku login

Creando una aplicación Heroku

Para implementar el proyecto primero debemos crear una aplicación Heroku.

heroku apps:create web_app_iris

Archivo requirements.txt

Este es el primer punto de entrada al programa. Instalará todas las dependencias necesarias para ejecutar su Código. requirements.txt le dirá a heroku que este proyecto requerirá todas estas librerias para ejecutar correctamente la aplicación.

Procfile

Heroku requiere que Procfile esté presente en el directorio raíz de su aplicación. Le dirá a Heroku cómo ejecutar la aplicación. Asegúrese de que sea un archivo simple sin extensión. La parte a la izquierda de los dos puntos es el tipo de proceso y la parte a la derecha es el comando a ejecutar para iniciar ese proceso. En esto, podemos decir en qué puerto se debe implementar el código y puede iniciar y detener estos procesos.

web: gunicorn script:app

Este archivo le dice a heroku que queremos usar el proceso web con el comando gunicorn y el nombre de la aplicación.

Implementar en Heroku

Asegúrese de que el archivo Procfile y el requirements.txt estén presentes en el directorio raíz de su aplicación. Posteriormente procedemos a crear el repositorio en github y crear la rama deploy para conectar el despliegue automático desde GitHub.

Una vez creado el repositorio en GitHub creamos la rama deploy.

En el dashboard principal de la aplicación HEROKU veremos desplegada la aplicación:

artefacto

Entramos dentro

git branch deploy
git checkout deploy
git push

Una vez creada la rama deployvamos a configurar el despliegue automático a Heroku desde GitHub, para ello entramos dentro del proyecto y seleccionamos la ventana Deploy:

deploy

Seleccionamos el método de despliegue como GitHub y conectamos el repositorio del proyecto en GitHub:

method

Una vez conectado el repositorio, seleccionamos la rama deployy habilitamos el despliegue automático:

enable_deploy

Con esto ya podemos desplegar nuestro servicio automáticamente cada vez que se haga un push de la rama deploy. Para ello, vamos a comprobarlo realizando el pushy situándonos en la pestaña de Activity del proyecto Heroku para ver el estado del despliegue:

despliegue_on

Una vez completado el despliegue, ya tendremos acceso a la app desde el botón Open app situado a la parte de arriba a la derecha:

completado

Con ello, ya tendríamos acceso a nuestra aplicación desplegada como un servicio dentro de Heroku:

comwebpletado

Conclusiones

Con este artículo, mi intención ha sido que puedan desplegar de forma exitosa este tipo de aplicaciones de manera sencilla y robusta para poder probar todas sus aplicaciones sin tener que preocuparse de toda la infraestructura IT de crear un servicio desde cero.

Espero que os haya sido de utilidad y que lo tengáis en cuenta como una herramienta más para el desarrollo de vuestras aplicaciones basadas en aprendizaje automático.

Owner
Jesùs Guillen
Jesùs Guillen
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021