Official code for HH-VAEM

Overview

HH-VAEM

This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the sampling-based feature acquisition technique presented in the paper Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo. HH-VAEM is a Hierarchical VAE model for mixed-type incomplete data that uses Hamiltonian Monte Carlo with automatic hyper-parameter tuning for improved approximate inference. The repository contains the implementation and the experiments provided in the paper.

Please, if you use this code, cite the preprint using:

@article{peis2022missing,
  title={Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo},
  author={Peis, Ignacio and Ma, Chao and Hern{\'a}ndez-Lobato, Jos{\'e} Miguel},
  journal={arXiv preprint arXiv:2202.04599},
  year={2022}
}

Instalation

The installation is straightforward using the following instruction, that creates a conda virtual environment named HH-VAEM using the provided file environment.yml:

conda env create -f environment.yml

Usage

Training

The project is developed in the recent research framework PyTorch Lightning. The HH-VAEM model is implemented as a LightningModule that is trained by means of a Trainer. A model can be trained by using:

# Example for training HH-VAEM on Boston dataset
python train.py --model HHVAEM --dataset boston --split 0

This will automatically download the boston dataset, split in 10 train/test splits and train HH-VAEM on the training split 0. Two folders will be created: data/ for storing the datasets and logs/ for model checkpoints and TensorBoard logs. The variable LOGDIR can be modified in src/configs.py to change the directory where these folders will be created (this might be useful for avoiding overloads in network file systems).

The following datasets are available:

  • A total of 10 UCI datasets: avocado, boston, energy, wine, diabetes, concrete, naval, yatch, bank or insurance.
  • The MNIST datasets: mnist or fashion_mnist.
  • More datasets can be easily added to src/datasets.py.

For each dataset, the corresponding parameter configuration must be added to src/configs.py.

The following models are also available (implemented in src/models/):

  • HHVAEM: the proposed model in the paper.
  • VAEM: the VAEM strategy presented in (Ma et al., 2020) with Gaussian encoder (without including the Partial VAE).
  • HVAEM: A Hierarchical VAEM with two layers of latent variables and a Gaussian encoder.
  • HMCVAEM: A VAEM that includes a tuned HMC sampler for the true posterior.
  • For MNIST datasets (non heterogeneous data), use HHVAE, VAE, HVAE and HMCVAE.

By default, the test stage will be executed at the end of the training stage. This can be cancelled with --test 0 for manually running the test using:

# Example for testing HH-VAEM on Boston dataset
python test.py --model HHVAEM --dataset boston --split 0

which will load the trained model to be tested on the boston test split number 0. Once all the splits are tested, the average results can be obtained using the script in the run/ folder:

# Example for obtaining the average test results with HH-VAEM on Boston dataset
python test_splits.py --model HHVAEM --dataset boston

Experiments

The experiments in the paper can be executed using:

# Example for running the SAIA experiment with HH-VAEM on Boston dataset
python active_learning.py --model HHVAEM --dataset boston --method mi --split 0

# Example for running the OoD experiment using MNIST and Fashion-MNIST as OoD:
python ood.py --model HHVAEM --dataset mnist --dataset_ood fashion_mnist --split 0

Once this is executed on all the splits, you can plot the SAIA error curves or obtain the average OoD metrics using the scripts in the run/ folder:

# Example for running the SAIA experiment with HH-VAEM on Boston dataset
python active_learning_plots.py --models VAEM HHVAEM --dataset boston

# Example for running the OoD experiment using MNIST and Fashion-MNIST as OoD:
python ood_splits.py --model HHVAEM --dataset mnist --dataset_ood fashion_mnist


Help

Use the --help option for documentation on the usage of any of the mentioned scripts.

Contributors

Ignacio Peis
Chao Ma
José Miguel Hernández-Lobato

Contact

For further information: [email protected]

Owner
Ignacio Peis
PhD student at UC3M \\ Visitor at the Machine Learning Group, CBL, University of Cambridge
Ignacio Peis
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Microsoft 5.6k Jan 07, 2023
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022