Avocado hass time series vs predict price

Overview

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE

Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới image

predict_avocado

https://avocado-hass.herokuapp.com/ deployed to Heroku

Please change setting to theme dark

Nếu trường muốn coi trên máy local host thì làm các bước sau:

Bước 1: Down code trên github về Bước 2: Vào trang streamlit để thực hiện theo hướng dẫn của treamlit: https://docs.streamlit.io/library/get-started/installation

I. TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU

  1. Mục đích
    • Dự đoán giá bơ trung bình của bơ "Hass" ở Mỹ
    • Xem xét mở rộng các loại trang trại Bơ đang có trong việc trồng bơ ở các vùng khác
    • Xây dựng mô hình dự báo giá trùng bình của bơ "Hass" ở Mỹ sau đó xem xét việc mở rộng sản xuất kinh doanh
  2. Vi sao có dự án nào ?
    • Ai (Who): Doanh nghiệp là người cần
    • Tại sao (Why): Giá bơ biến động ở các vùng khác nhau ? Có nên trồng bơ các vùng đó không ?
  3. Hiện tại
    • Công ty kinh doanh quả bơ ở rất nhiều vùng của nước Mỹ có 2 loại bơ: Bơ thường và bơ hữu cơ
    • Quy cách đóng gọi theo nhiều quy chuẩn: Small/ Large/ Xlarge Bags
    • Có 3 loại item (product look up) khác nhau: 4046, 4225, 4770
  4. Vấn đề
    • Doanh nghiệp chưa có mô hình dự báo giá bơ cho việc mở rộng
    • Tối ưu sao việc tiếp cận giá bơ tới người tiêu dùng thấp nhất
  5. Thách thức và cách tiếp cận - Challenge and Approach
    • Dữ liệu được lấy trực tiếp từ máy tính tính tiền của các nhà bán lẻ dựa trên doanh số bán lẻ thực tế của bơ Hass
    • Dữ liệu đại diện cho dữ liệu lấy từ máy quét bán lẻ hàng tuần cho lượng bán lẻ (National retail volumn - units) và giá bơ từ tháng 4/2015 đến tháng 3/2018
    • Giá Trung bình (Average Price) trong bảng phản ánh giá trên một đơn vị (mỗi quả bơ), ngay cả khi nhiều đơn vị (bơ) được bán trong bao
    • Mã tra cứu sản phẩm - Product Lookup codes (PLU’s) trong bảng chỉ dành cho bơ Hass, không dành cho các sản phẩm khác.
  6. Data obtained - Thu thập dữ liệu
    • Không thông quan nguồn cào data
    • Toàn bộ dữ liệu được đổ ra và lưu trữ trong tập tin avocado.csv với 18249 record.
    • Có 2 loại bơ trong tập dữ liệu và một số vùng khác nhau. Điều này cho phép chúng ta thực hiện tất cả các loại phân tích cho các vùng khác nhau hoặc phân tích toàn bộ nước mỹ theo một trong 2 loại bơ
  7. Đặt ra yêu cầu với bài toán

Yêu cầu 1: Với bài toán 1: thực hiện dự đoán giá bơ trung bình

  • Thực hiện các tiền xử lý dữ liệu bổ sung (nếu cần)
  • Ngoài những thuật toán regression đã được thực hiện, có thuật toán nào khác cho kết quả tốt hơn không? Thực hiện với thuật toán đó. Tổng hợp kết quả thu được."

Yêu cầu 2: Với bài toán 2: Thực hiện dự đoán giá, khả năng mở rộng trong tương lai với Organic Avocado ở vùng California

Yêu cầu 3: Hãy làm tiếp phần dự đoán giá bơ thường (Conventiton Avocado) của vùng California

Yêu cầu 4: Hãy chọn ra 1 vùng (Trong danh sách các vùng bơ "Hass" đang kinh doanh) mà bạn cho rằng trong tương lai có thể trong trọt, sản xuất kinh doanh (organic và/ hoặc Conventional Avocado). Hãy chứng minh đều này bằng cách triển khai các bài toán như đã với vùng california

II. TỔNG QUAN VỀ THỊ TRƯỜNG

  1. Thị trường Hoa Kỳ image
  2. Mục tiêu và cấn tiếp cận image
  3. Ai là người và cần gì ? image
  4. Kết luận image

III. HƯỚNG DẪN SỬ DỤNG VÀ CHỌN CÁC TÍNH NĂNG DỰ ĐOÁN GIÁ BƠ

image

Owner
hieulmsc
Supply chain management and finance, costing analysis
hieulmsc
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023