Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Related tags

Deep LearningWorktory
Overview

Welcome to Worktory's documentation!

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

As the network automation ecosystem grows, several connection plugins and parsers are available, and several times choosing a library or a connection plugin restricts all the devices to the same connection method.

Worktory tries to solve that problem giving the developer total flexibility for choosing the connector plugin and parsers for each device, at the same time that exposes a single interface for every plugin.

Installing

Worktory is available in PyPI, to install run:

$ pip install worktory

Using worktory

Sample Inventory

devices = [
            {
            'name': 'sandbox-iosxr-1',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'async',
            'transport': 'asyncssh',
            },
            {
            'name': 'sandbox-nxos-1',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'cisco_nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['CORE'],
            'select_parsers' : 'ntc',
            'connection_manager': 'scrapli',
            'mode': 'async',
            'transport': 'asyncssh'
            },
            {
            'name': 'sandbox-nxos-2',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['EDGE'],
            'connection_manager': 'unicon',
            'mode': 'sync',
            'transport': 'ssh',
            'GRACEFUL_DISCONNECT_WAIT_SEC': 0,
            'POST_DISCONNECT_WAIT_SEC': 0,
            },
            {
            'name': 'sandbox-iosxr-2',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'sync',
            },
        ]

Collecting Running config from async devices

from worktory import InventoryManager
import asyncio
inventory = InventoryManager(devices)

device_configs = {}
async def get_config(device):
    await device.connect()
    config = await device.execute("show running-config")
    device_configs[device.name] = config
    await device.disconnect()

async def async_main():
    coros = [get_config(device) for device in inventory.filter(mode='async')]
    await asyncio.gather(*coros)

loop = asyncio.get_event_loop()
loop.run_until_complete(async_main())

Collecting Running config from sync devices

from worktory import InventoryManager
from multiprocessing import Pool
inventory = InventoryManager(devices)

def get_config(device_name):
    inventory = InventoryManager(devices)
    device = inventory.devices[device_name]
    device.connect()
    config = device.execute("show running-config")
    device.disconnect()
    return ( device.name , config )

def main():
    devs = [device.name for device in inventory.filter(mode='sync')]
    with Pool(2) as p:
        return p.map(get_config, devs)


output = main()
Owner
Renato Almeida de Oliveira
I'm a telecommunications Engineer, with experience on network engineering
Renato Almeida de Oliveira
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022