code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Related tags

Deep LearningBPR
Overview

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021)

Introduction

PBR is a conceptually simple yet effective post-processing refinement framework to improve the boundary quality of instance segmentation. Following the idea of looking closer to segment boundaries better, BPR extracts and refines a series of small boundary patches along the predicted instance boundaries. The proposed BPR framework (as shown below) yields significant improvements over the Mask R-CNN baseline on the Cityscapes benchmark, especially on the boundary-aware metrics.

framework

For more details, please refer to our paper.

Installation

Please refer to INSTALL.md.

Training

Prepare patches dataset [optional]

First, you need to generate the instance segmentation results on the Cityscapes training and validation set, as the following format:

maskrcnn_train
- aachen_000000_000019_leftImg8bit_pred.txt
- aachen_000001_000019_leftImg8bit_0_person.png
- aachen_000001_000019_leftImg8bit_10_car.png
- ...

maskrcnn_val
- frankfurt_000001_064130_leftImg8bit_pred.txt
- frankfurt_000001_064305_leftImg8bit_0_person.png
- frankfurt_000001_064305_leftImg8bit_10_motorcycle.png
- ...

The content of the txt file is the same as the standard format required by cityscape script, e.g.:

frankfurt_000000_000294_leftImg8bit_0_person.png 24 0.9990299940109253
frankfurt_000000_000294_leftImg8bit_1_person.png 24 0.9810258746147156
...

Then use the provided script to generate the training set:

sh tools/prepare_dataset.sh \
  maskrcnn_train \
  maskrcnn_val \
  maskrcnn_r50

Note that this step can take about 2 hours. Feel free to skip it by downloading the processed training set.

Train the network

Point DATA_ROOT to the patches dataset and run the training script

DATA_ROOT=maskrcnn_r50/patches \
bash tools/dist_train.sh \
  configs/bpr/hrnet18s_128.py \
  4

Inference

Suppose you have some instance segmentation results of Cityscapes dataset, as the following format:

maskrcnn_val
- frankfurt_000001_064130_leftImg8bit_pred.txt
- frankfurt_000001_064305_leftImg8bit_0_person.png
- frankfurt_000001_064305_leftImg8bit_10_motorcycle.png
- ...

We provide a script (tools/inference.sh) to perform refinement operation, usage:

IOU_THRESH=0.55 \
IMG_DIR=data/cityscapes/leftImg8bit/val \
GT_JSON=data/cityscapes/annotations/instancesonly_filtered_gtFine_val.json \
BPR_ROOT=. \
GPUS=4 \
sh tools/inference.sh configs/bpr/hrnet48_256.py ckpts/hrnet48_256.pth maskrcnn_val maskrcnn_val_refined

The refinement results will be saved in maskrcnn_val_refined/refined.

For COCO model, use tools/inference_coco.sh instead.

Models

Backbone Dataset Checkpoint
HRNet-18s Cityscapes Tsinghua Cloud
HRNet-48 Cityscapes Tsinghua Cloud
HRNet-18s COCO Tsinghua Cloud

Acknowledgement

This project is based on mmsegmentation code base.

Citation

If you find this project useful in your research, please consider citing:

@article{tang2021look,
  title={Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation},
  author={Chufeng Tang and Hang Chen and Xiao Li and Jianmin Li and Zhaoxiang Zhang and Xiaolin Hu},
  journal={arXiv preprint arXiv:2104.05239},
  year={2021}
}
Owner
H.Chen
PhD student in computer vision
H.Chen
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022