Multitask Learning Strengthens Adversarial Robustness

Related tags

Deep LearningMTRobust
Overview

Multitask Learning Strengthens Adversarial Robustness

@inproceedings{mao2020multitask,
  author    = {Chengzhi Mao and
               Amogh Gupta and
               Vikram Nitin and
               Baishakhi Ray and
               Shuran Song and
               Junfeng Yang and
               Carl Vondrick},
  title     = {Multitask Learning Strengthens Adversarial Robustness},
  booktitle = {Computer Vision - {ECCV} 2020 - 16th European Conference, Glasgow,
               UK, August 23-28, 2020, Proceedings, Part {II}},
  series    = {Lecture Notes in Computer Science},
  volume    = {12347},
  pages     = {158--174},
  publisher = {Springer},
  year      = {2020},
  url       = {https://doi.org/10.1007/978-3-030-58536-5\_10},
  doi       = {10.1007/978-3-030-58536-5\_10},
}

Demo for Robustness under multitask attack

Download Cityscapes dataset from Cityscapes.

Download pretrained DRN-22 model from DRN model zoo.

Modify the path to data and model in demo_mtlrobust.py.

Run demo to see the trend that model overall robustness is increased when the output dimension increased.

To see the gradient norm measurement of robustness, set get_grad=True,

To see the actually robust accuracy for model, set test_acc_output_dim=False

python demo_mtlrobust.py

which explains why segmentation is inherently robust.

CityScape

Data preprocessing

Run python data_resize_cityscape.py to resize to smaller images.

Train Robust model against single task attack

  1. Set up the path to data in config/drn_d_22_cityscape_config.json

  2. Run cityscape_example.sh to train a main task with auxiliary task for robustness.

Taskonomy

Data Preprocessing

You can use our preprocessed data from preprocessed data

Or do from scratch

  1. Download data from official raw data.

  2. Run python data_resize_taskonomy.py to resize to smaller images.

  3. Rename segment_semantic to segmentsemantic.

Train Robust model against single task attack

  1. Set up the path to data in config/resnet18_taskonomy_config.json

  2. Run taskonomy_example.sh to train a main task with auxiliary task for robustness. For different task, we have different different setup, refer to our paper and supplementary for details.

Model evaluation

We offer our pretrained models to download here: Cityscapes segmentation depth and Taskonomy taskonomy segmentation demo

After setting up the path to your downloaded models in test_cityscapes_seg.py and test_taskonomy_seg.py,

Run python test_cityscapes_seg.py and python test_taskonomy_seg.py for evaluating the robustness of multitask models under single task attacks.

Pretrained models for other tasks for Taskonomy can be downloaded [here, comming soon](comming soon)

Acknowledgement

Our code refer the code at: https://github.com/fyu/drn/blob/master/drn.py Taskonomy https://github.com/tstandley/taskgrouping,

We thank the authors for open sourcing their code.

Owner
Columbia University
Columbia University
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022