Hitters Linear Regression - Hitters Linear Regression With Python

Overview

Hitters_Linear_Regression

image

Kullanacağımız veri seti Carnegie Mellon Üniversitesi'nde bulunan StatLib kütüphanesinden alınmıştır. Veri seti 1988 ASA Grafik Bölümü Poster Oturumu'nda kullanılan verilerin bir parçasıdır. Maaş verileri orijinal olarak Sports Illustrated, 20 Nisan 1987'den alınmıştır. 1986 ve kariyer istatistikleri, Collier Books, Macmillan Publishing Company, New York tarafından yayınlanan 1987 Beyzbol Ansiklopedisi Güncellemesinden elde edilmiştir. Salary yani maaş değişkeninini bu projede linear regression ile tahmin edeceğiz.

Veri setini daha yakından tanımak adına değişkenleri tanıyalım:

AtBat: 1986–1987 sezonunda bir beyzbol sopası ile topa yapılan vuruş sayısı 

Hits: 1986–1987 sezonundaki isabet sayısı 

HmRun: 1986–1987 sezonundaki en değerli vuruş sayısı 

Runs: 1986–1987 sezonunda takımına kazandırdığı sayı 

RBI: Bir vurucunun vuruş yaptığında koşu yaptırdığı oyuncu sayısı 

Walks: Karşı oyuncuya yaptırılan hata sayısı 

Years: Oyuncunun major liginde oynama süresi (sene) 

CAtBat: Oyuncunun kariyeri boyunca topa vurma sayısı 

CHits: Oyuncunun kariyeri boyunca yaptığı isabetli vuruş sayısı 

CHmRun: Oyucunun kariyeri boyunca yaptığı en değerli vuruş sayısı 

CRuns: Oyuncunun kariyeri boyunca takımına kazandırdığı sayı 

CRBI: Oyuncunun kariyeri boyunca koşu yaptırdırdığı oyuncu sayısı 

CWalks: Oyuncun kariyeri boyunca karşı oyuncuya yaptırdığı hata sayısı 

League: Oyuncunun sezon sonuna kadar oynadığı ligi gösteren A ve N seviyelerine sahip bir faktör 

Division: 1986 sonunda oyuncunun oynadığı pozisyonu gösteren E ve W seviyelerine sahip bir faktör 

PutOuts: Oyun icinde takım arkadaşınla yardımlaşma 

Assits: 1986–1987 sezonunda oyuncunun yaptığı asist sayısı 

Errors: 1986–1987 sezonundaki oyuncunun hata sayısı 

Salary: Oyuncunun 1986–1987 sezonunda aldığı maaş(bin uzerinden) 

NewLeague: 1987 sezonunun başında oyuncunun ligini gösteren A ve N seviyelerine sahip bir faktör

Owner
AyseBuyukcelik
AyseBuyukcelik
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022