Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Overview

Weakly Supervised Text-to-SQL Parsing through Question Decomposition

The official repository for the paper "Weakly Supervised Text-to-SQL Parsing through Question Decomposition" by Tomer Wolfson, Daniel Deutch and Jonathan Berant, accepted to the Finings of NAACL 2022.

This repository contains the code and data used in our paper:

  1. Code for automatically synthesizing SQL queries from question decompositions + answers
  2. Code for the models used in our paper mapping text-to-SQL and text-to-QDMR

Setup 🙌🏼

  1. Create the virtual environment
conda create -n [ENV_NAME] python=3.8
conda activate [ENV_NAME]
  1. Clone the repository
git clone https://github.com/tomerwolgithub/question-decomposition-to-sql
cd question-decomposition-to-sql
  1. Install the relevant requirements
pip install -r requirements.txt 
python -m spacy download en_core_web_lg
  1. To train the QDMR parser model please setup a separate environment (due to different Hugginface versions):
conda create -n qdmr_parser_env python=3.8
conda activate qdmr_parser_env
pip install -r requirements_qdmr_parser.txt 
python -m spacy download en_core_web_lg

Download Resources 🗝️

1. QDMR Parsing Datasets:

2. Text-to-SQL Datasets:

3. Databases (schema & contents):

Convert the MySQL databases of Academic, IMDB, Yelp and GeoQuery to sqlite format using the tool of Jean-Luc Lacroix:

./mysql2sqlite academic_mysql.sql | sqlite3 academic_sqlite.db

Data Generation 🔨

Our SQL synthesis is given examples of <QDMR, database, answer> and automatically generates a SQL that executes to the correct answer. The QDMR decompositions are either manually annotated or automatically predicted by a trained QDMR parser.

Begin by copying all relevant sqlite databases to the data_generation directory.

mkdir data_generation/data
mkdir data_generation/data/spider_databases # copy Spider databases here
mkdir data_generation/data/other_databases # copy Academic, IMDB, Yelp and Geo databases here
  1. The SQL synthesis expects a formatted csv file, see example. Note that the SQL query in these files is only used to compute the answer.
  2. This may take several hours, as multiple candidate SQL are being executed on their respective database.
  3. To synthesize SQL from the <QDMR, database, answer> examples run:
python data_generation/main.py \
--input_file input_qdmr_examples.csv \
--output_file qdmr_grounded_sql.csv \
--json_steps True

Synthesized Data

The SQL synthesized using QDMR + answer supervision is available for each dataset in the data/sql_synthesis_results/ directory.

  • data/sql_synthesis_results/gold_qdmr_supervision: contains SQL synthesized using gold QDMRs that are manually annotated
  • data/sql_synthesis_results/predicted_qdmr_supervision: contains SQL synthesized using QDMRs predicted by a trained parser

Models 🗂️

QDMR Parser

The QDMR parser is a T5-large sequence-to-sequence model that is finetuned to map questions to their QDMR. The model expects as input two csv files as its train and dev sets. Use the files from the downloaded Break dataset to train the parser. Make sure that you are in the relevant python environment (requirements_qdmr_parser.txt).

To train the QDMR parser configure the following parameters in train.py:

  • data_dir: the path to the directory containing the NL to QDMR datasets
  • training_set_file: name of the train set csv (e.g. break_train.csv)
  • dev_set_file: name of the dev set csv (e.g. break_dev.csv)
  • output_dir: the directory to store the trained model

After configuration, train the model as follows:

TOKENIZERS_PARALLELISM=false CUDA_VISIBLE_DEVICES=0 python src/qdmr_parser/train.py

To test a trained model and store its predictions, configure the following parameters in test.py:

  • checkpoint_path: path to the trained QDMR parser model to be evaluated
  • dev_set_file: name of the dev set csv to generate predictions for
  • predictions_output_file: the output file to store the parser's generated predictions

And run the following command:

TOKENIZERS_PARALLELISM=false CUDA_VISIBLE_DEVICES=0 python src/qdmr_parser/test.py

Text-to-SQL

The text-to-SQL models are T5-large sequence-to-sequence models, finetuned to map questions to executable SQL queries. We compare the models trained on gold SQL queries, annotated by experts, to our synthesized SQL from QDMR and answer supervision.

1. Setup directory

Setup the data for the text-to-SQL experiments as follows:

data
├── tables.json			# Spider tables.json
└── databases
│   └── academic			
│       └── academic.sqlite	# Sqlite version of the populated Academic database (see downloads)
│   └── geo			
│       └── geo.sqlite		# Sqlite version of the populated Geo database (see downloads)
│   └── imdb			
│       └── imdb.sqlite		# Sqlite version of the populated IMDB database (see downloads)
│   └── spider_databases 	# Spider databases directory
│       └── activity_1
│           └── activity_1.sqlite
│       └── ...   
│   └── yelp			
│       └── yelp.sqlite		# Sqlite version of the populated Yelp database (see downloads)
└── queries
    └── geo	# See experiments data
        ├── geo_qdmr_train.json
	└── geo_qdmr_predicted_train.json
	└── geo_gold_train.json
	└── geo_gold_dev.json
	└── geo_gold_test.json
	└── geo_gold_train.sql
	└── geo_gold_dev.sql
	└── geo_gold_test.sql
    └── spider
        ├── spider_qdmr_train.json		# See experiments data
	└── spider_qdmr_predicted_train.json 	# See experiments data
	└── spider_gold_train.json 	# Spider training set
	└── spider_gold_dev.json 	# Spider dev set
	└── spider_gold_train.sql 	# Spider training set SQL queries
	└── spider_gold_dev.sql 	# Spider dev set SQL queries

Database files are described in the downloads section. See the experiments section for the exact train and test files.

2. Train model

To train the text-to-SQL model configure its following parameters in train.py:

  • dataset: either spider or geo
  • target_encoding: sql for gold sql and either qdmr_formula or qdmr_sql for the QDMR experiments
  • data_dir: path to the directory containing the experiments data
  • output_dir: the directory to store the trained model
  • db_dir: the directory to store the trained model
  • training_set_file: training set file in the data directory e.g. spider/spider_gold_train.json
  • dev_set_file: dev set file in the data directory e.g. spider/spider_gold_dev.json
  • dev_set_sql: dev set SQL queries in the data directory e.g. spider/spider_gold_dev.sql

Following configuration, to train the model run:

CUDA_VISIBLE_DEVICES=0 python train.py 

3. Test model

To test the text-to-SQL model first configure the relevant parameters and checkpoint_path in test.py. Following the configuration, generate the trained model predictions using:

CUDA_VISIBLE_DEVICES=0 python test.py 

Experiments ⚗️

Data

Gold SQL:

For the Spider experiments we use its original train and dev json and sql files. For Geo880, Academic, IMDB and Yelp we format the original datasets in json files available here.

QDMR Synthesized SQL:

The QDMR text-to-SQL models are not trained directly on the synthesized SQL. Instead, we train on an encoded QDMR representation with its phrase-DB linking (from the SQL synthesis). This representation is automatically mapped to SQL to evaluate the models execution accuracy. To generate these grounded QDMRs we use the output of the data generation phase. The function encoded_grounded_qdmr in src/data_generation/write_encoding.py recieves the json file containing the synthesized SQL examples. It then encodes them as lisp style formulas of QDMR steps and their relevant phrase-DB linking.

For convenience, you can download the encoded QDMR training sets used in our experiments here. These include:

  • qdmr_ground_enc_spider_train.json: 5,349 examples, synthesized using gold QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_few_shot: 5,075 examples, synthesized examples using 700 gold QDMRs, predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_30_db.json: 1,129 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_40_db.json: 1,440 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_40_db_V2.json: 1,552 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_geo880_train.json: 454 examples, synthesized using gold QDMR + answer supervision
  • qdmr_ground_enc_predicted_geo_train_zero_shot.json: 432 examples, synthesized using predicted QDMR + answer supervision

Configurations

The configurations for training the text-to-SQL models on Spider. Other parameters are fixed in train.py.

SQL Gold (Spider):

{'dataset': 'spider',
'target_encoding': 'sql',
'db_dir': 'databases/spider_databases',
'training_set_file': 'queries/spider/spider_gold_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

QDMR Gold (Spider):

{'dataset': 'spider',
'target_encoding': 'qdmr_formula',
'db_dir': 'databases/spider_databases',
'training_set_file': 'queries/spider/spider_qdmr_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

SQL Predicted (Spider):

{'dataset': 'spider',
'target_encoding': 'qdmr_formula',
'db_dir': `databases/spider_databases',
'training_set_file': 'queries/spider/spider_qdmr_predicted_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

The configurations for training the text-to-SQL models on Geo880.

SQL Gold (Geo):

{'dataset': 'geo',
'target_encoding': 'sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_gold_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

QDMR Gold (Geo):

{'dataset': 'geo',
'target_encoding': 'qdmr_sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_qdmr_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

QDMR Predicted (Geo):

{'dataset': 'geo',
'target_encoding': 'qdmr_sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_qdmr_predicted_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

Evaluation

Text-to-SQL model performance is evaluated using SQL execution accuracy in src/text_to_sql/eval_spider.py. The script automatically converts encoded QDMR predictions to SQL before executing them on the target database.

Citation ✍🏽

bibtex
@inproceedings{wolfson-etal-2022-weakly,
    title={"Weakly Supervised Text-to-SQL Parsing through Question Decomposition"},
    author={"Wolfson, Tomer and Deutch, Daniel and Berant, Jonathan"},
    booktitle = {"Findings of the Association for Computational Linguistics: NAACL 2022"},
    year={"2022"},
}

License

This repository and its data is released under the MIT license.

For the licensing of all external datasets and databases used throughout our experiments:

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022