This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Overview

Deep Extreme Cut (DEXTR)

Visit our project page for accessing the paper, and the pre-computed results.

DEXTR

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This code was ported to PyTorch 0.4.0! For the previous version of the code with Pytorch 0.3.1, please checkout this branch.

NEW: Keras with Tensorflow backend implementation also available: DEXTR-KerasTensorflow!

Abstract

This paper explores the use of extreme points in an object (left-most, right-most, top, bottom pixels) as input to obtain precise object segmentation for images and videos. We do so by adding an extra channel to the image in the input of a convolutional neural network (CNN), which contains a Gaussian centered in each of the extreme points. The CNN learns to transform this information into a segmentation of an object that matches those extreme points. We demonstrate the usefulness of this approach for guided segmentation (grabcut-style), interactive segmentation, video object segmentation, and dense segmentation annotation. We show that we obtain the most precise results to date, also with less user input, in an extensive and varied selection of benchmarks and datasets.

Installation

The code was tested with Miniconda and Python 3.6. After installing the Miniconda environment:

  1. Clone the repo:

    git clone https://github.com/scaelles/DEXTR-PyTorch
    cd DEXTR-PyTorch
  2. Install dependencies:

    conda install pytorch torchvision -c pytorch
    conda install matplotlib opencv pillow scikit-learn scikit-image
  3. Download the model by running the script inside models/:

    cd models/
    chmod +x download_dextr_model.sh
    ./download_dextr_model.sh
    cd ..

    The default model is trained on PASCAL VOC Segmentation train + SBD (10582 images). To download models trained on PASCAL VOC Segmentation train or COCO, please visit our project page, or keep scrolling till the end of this README.

  4. To try the demo version of DEXTR, please run:

    python demo.py

If installed correctly, the result should look like this:

To train and evaluate DEXTR on PASCAL (or PASCAL + SBD), please follow these additional steps:

  1. Install tensorboard (integrated with PyTorch).

    pip install tensorboard tensorboardx
  2. Download the pre-trained PSPNet model for semantic segmentation, taken from this repository.

    cd models/
    chmod +x download_pretrained_psp_model.sh
    ./download_pretrained_psp_model.sh
    cd ..
  3. Set the paths in mypath.py, so that they point to the location of PASCAL/SBD dataset.

  4. Run python train_pascal.py, after changing the default parameters, if necessary (eg. gpu_id).

Enjoy!!

Pre-trained models

You can use the following DEXTR models under MIT license as pre-trained on:

  • PASCAL + SBD, trained on PASCAL VOC Segmentation train + SBD (10582 images). Achieves mIoU of 91.5% on PASCAL VOC Segmentation val.
  • PASCAL, trained on PASCAL VOC Segmentation train (1464 images). Achieves mIoU of 90.5% on PASCAL VOC Segmentation val.
  • COCO, trained on COCO train 2014 (82783 images). Achieves mIoU of 87.8% on PASCAL VOC Segmentation val.

Citation

If you use this code, please consider citing the following papers:

@Inproceedings{Man+18,
  Title          = {Deep Extreme Cut: From Extreme Points to Object Segmentation},
  Author         = {K.K. Maninis and S. Caelles and J. Pont-Tuset and L. {Van Gool}},
  Booktitle      = {Computer Vision and Pattern Recognition (CVPR)},
  Year           = {2018}
}

@InProceedings{Pap+17,
  Title          = {Extreme clicking for efficient object annotation},
  Author         = {D.P. Papadopoulos and J. Uijlings and F. Keller and V. Ferrari},
  Booktitle      = {ICCV},
  Year           = {2017}
}

We thank the authors of pytorch-deeplab-resnet for making their PyTorch re-implementation of DeepLab-v2 available!

If you encounter any problems please contact us at {kmaninis, scaelles}@vision.ee.ethz.ch.

Owner
Sergi Caelles
Computer Vision researcher with special interest in applying deep learning to segmentation and detection tasks.
Sergi Caelles
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022