Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Overview

Weakly Supervised Segmentation with TensorFlow

This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

The idea behind weakly supervised segmentation is to train a model using cheap-to-generate label approximations (e.g., bounding boxes) as substitute/guiding labels for computer vision classification tasks that usually require very detailed labels. In semantic labelling, each image pixel is assigned to a specific class (e.g., boat, car, background, etc.). In instance segmentation, all the pixels belonging to the same object instance are given the same instance ID.

Per [2014a], pixelwise mask annotations are far more expensive to generate than object bounding box annotations (requiring up to 15x more time). Some models, like Simply Does It (SDI) [2016a] claim they can use a weak supervision approach to reach 95% of the quality of the fully supervised model, both for semantic labelling and instance segmentation.

Simple Does It (SDI)

Experimental Setup for Instance Segmentation

In weakly supervised instance segmentation, there are no pixel-wise annotations (i.e., no segmentation masks) that can be used to train a model. Yet, we aim to train a model that can still predict segmentation masks by only being given an input image and bounding boxes for the objects of interest in that image.

The masks used for training are generated starting from individual object bounding boxes. For each annotated bounding box, we generate a segmentation mask using the GrabCut method (although, any other method could be used), and train a convnet to regress from the image and bounding box information to the instance segmentation mask.

Note that in the original paper, a more sophisticated segmenter is used (M∩G+).

Network

SDI validates its work repurposing two different instance segmentation architectures (DeepMask [2015a] and DeepLab2 VGG-16 [2016b]). Here we use the OSVOS FCN (See section 3.1 of [2016c]).

Setup

The code in this repo was developed and tested using Anaconda3 v.4.4.0. To reproduce our conda environment, please use the following files:

On Ubuntu:

On Windows:

Jupyter Notebooks

The recommended way to test this implementation is to use the following jupyter notebooks:

  • VGG16 Net Surgery: The weakly supervised segmentation techniques presented in the "Simply Does It" paper use a backbone convnet (either DeepLab or VGG16 network) pre-trained on ImageNet. This pre-trained network takes RGB images as an input (W x H x 3). Remember that the weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. Therefore, we need to perform net surgery and create a 4-channel input version of the VGG16 net, initialized with the 3-channel parameter values except for the additional convolutional filters (we use Gaussian initialization for them).
  • "Simple Does It" Grabcut Training for Instance Segmentation: This notebook performs training of the SDI Grabcut weakly supervised model for instance segmentation. Following the instructions provided in Section "6. Instance Segmentation Results" of the "Simple Does It" paper, we use the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data. The Berkley augmented dataset can be downloaded from here. Again, the SDI Grabcut training is done using a 4-channel input VGG16 network pre-trained on ImageNet, so make sure to run the VGG16 Net Surgery notebook first!
  • "Simple Does It" Weakly Supervised Instance Segmentation (Testing): The sample results shown in the notebook come from running our trained model on the validation split of the Berkeley-augmented dataset.

Link to Pre-trained model and BK-VOC data files

The pre-processed BK-VOC dataset, "grabcut" segmentations, and results as well as pre-trained models (vgg_16_4chan_weak.ckpt-50000) can be found here:

If you'd rather download the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data from its origin, click here. Then, execute lines similar to these lines in dataset.py to generate the intermediary files used by this project:

if __name__ == '__main__':
    dataset = BKVOCDataset()
    dataset.prepare()

Make sure to set the paths at the top of dataset.py to the correct location:

if sys.platform.startswith("win"):
    _BK_VOC_DATASET = "E:/datasets/bk-voc/benchmark_RELEASE/dataset"
else:
    _BK_VOC_DATASET = '/media/EDrive/datasets/bk-voc/benchmark_RELEASE/dataset'

Training

The fully supervised version of the instance segmentation network whose performance we're trying to match is trained using the RGB images as inputs. The weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. In the latter case, the same RGB image may appear in several input samples (as many times as there are object instances associated with that RGB image).

To be clear, the output labels used for training are NOT user-provided detailed groundtruth annotations. There are no such groundtruths in the weakly supervised scenario. Instead, the labels are the segmentation masks generated using the GrabCut+ method. The weakly supoervised model is trained to regress from an image and bounding box information to a generated segmentation mask.

Testing

The sample results shown here come from running our trained model on the validation split of the Berkeley-augmented dataset (see the testing notebook). Below, we (very) subjectively categorize them as "pretty good" and "not so great".

Pretty good

Not so great

References

2016

  • [2016a] Khoreva et al. 2016. Simple Does It: Weakly Supervised Instance and Semantic Segmentation. [arXiv] [web]
  • [2016b] Chen et al. 2016. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. [arXiv]
  • [2016c] Caelles et al. 2016. OSVOS: One-Shot Video Object Segmentation. [arXiv]

2015

  • [2015a] Pinheiro et al. 2015. DeepMask: Learning to Segment Object Candidates. [arXiv]

2014

  • [2014a] Lin et al. 2014. Microsoft COCO: Common Objects in Context. [arXiv] [web]
Owner
Phil Ferriere
Former Microsoft Development Lead passionate about Deep Learning with a focus on Computer Vision.
Phil Ferriere
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022