:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

Overview

R²SQL

The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021)

Requirements

The model is tested in python 3.6 with following requirements:

torch==1.0.0
transformers==2.10.0
sqlparse
pymysql
progressbar
nltk
numpy
six
spacy

All experiments on SParC and CoSQL datasets were run on NVIDIA V100 GPU with 32GB GPU memory.

  • Tips: The 16GB GPU memory may appear out-of-memory error.

Setup

The SParC and CoSQL experiments in two different folders, you need to download different datasets from [SParC | CoSQL] to the {sparc|cosql}/data folder separately. Another related data file could be download from EditSQL. Then, download the database sqlite files from [here] as data/database.

Download Pretrained BERT model from [here] as model/bert/data/annotated_wikisql_and_PyTorch_bert_param/pytorch_model_uncased_L-12_H-768_A-12.bin.

Download Glove embeddings file (glove.840B.300d.txt) and change the GLOVE_PATH for your own path in all scripts.

Download Reranker models from [SParC reranker | CoSQL reranker] as submit_models/reranker_roberta.pt, besides the roberta-base model could download from here for ./[sparc|cosql]/local_param/.

Usage

Train the model from scratch.

./sparc_train.sh

Test the model for the concrete checkpoint:

./sparc_test.sh

then the dev prediction file will be appeared in results folder, named like save_%d_predictions.json.

Get the evaluation result from the prediction file:

./sparc_evaluate.sh

the final result will be appeared in results folder, named *.eval.

Similarly, the CoSQL experiments could be reproduced in same way.


You could download our trained checkpoint and results in here:

Reranker

If your want train your own reranker model, you could download the training file from here:

Then you could train, test and predict it:

train:

python -m reranker.main --train --batch_size 64 --epoches 50

test:

python -m reranker.main --test --batch_size 64

predict:

python -m reranker.predict

Improvements

We have improved the origin version (descripted in paper) and got more performance improvements 🥳 !

Compare with the origin version, we have made the following improvements:

  • add the self-ensemble strategy for prediction, which use different epoch checkpoint to get final result. In order to easily perform this strategy, we remove the task-related representation in Reranker module.
  • remove the decay function in DCRI, we find that DCRI is unstable with decay function, so we let DCRI degenerate into vanilla cross attention.
  • replace the BERT-based with RoBERTa-based model for Reranker module.

The final performance comparison on dev as follows:

SParC CoSQL
QM IM QM IM
EditSQL 47.2 29.5 39.9 12.3
R²SQL v1 (origin paper) 54.1 35.2 45.7 19.5
R²SQL v2 (this repo) 54.0 35.2 46.3 19.5
R²SQL v2 + ensemble 55.1 36.8 47.3 20.9

Citation

Please star this repo and cite paper if you want to use it in your work.

Acknowledgments

This implementation is based on "Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions" EMNLP 2019.

Owner
huybery
Understanding & Generating Language.
huybery
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022