Weakly Supervised Segmentation by Tensorflow.

Overview

Simple-does-it-weakly-supervised-instance-and-semantic-segmentation

There are five weakly supervised networks in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017). Respectively, Naive, Box, Box^i, Grabcut+, M∩G+. All of them use cheap-to-generate label, bounding box, during training and don't need other informations except image during testing.

This repo contains a TensorFlow implementation of Grabcut version of semantic segmentation.

My Environment

Environment 1

  • Operating System:
    • Arch Linux 4.15.15-1
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7.0.5-2
  • GPU:
    • GTX 1070 8G
  • Nvidia driver:
    • 390.25
  • Python:
    • python 3.6.4
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.5.0

Environment 2

  • Operating System:
    • Ubuntu 16.04
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7
  • GPU:
    • GTX 1060 6G
  • Nvidia driver:
    • 390.48
  • Python:
    • python 3.5.2
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.6.0

Downloading the VOC12 dataset

Setup Dataset

My directory structure

./Simple_does_it/
├── Dataset
│   ├── Annotations
│   ├── CRF_masks
│   ├── CRF_pairs
│   ├── Grabcut_inst
│   ├── Grabcut_pairs
│   ├── JPEGImages
│   ├── Pred_masks
│   ├── Pred_pairs
│   ├── SegmentationClass
│   └── Segmentation_label
├── Model
│   ├── Logs
│   └── models
├── Parser_
├── Postprocess
├── Preprocess
└── Util

VOC2012 directory structure

VOCtrainval_11-May-2012
└── VOCdevkit
    └── VOC2012
        ├── Annotations
        ├── ImageSets
        │   ├── Action
        │   ├── Layout
        │   ├── Main
        │   └── Segmentation
        ├── JPEGImages
        ├── SegmentationClass
        └── SegmentationObject
  • Put annotations in 'Annotations'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/Annotations/* {PATH}/Simple_does_it/Dataset/Annotations/ 
  • Put images in 'JPEGImages'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/JPEGImages/* {PATH}/Simple_does_it/Dataset/JPEGImages/
  • Put Ground truth in 'SegmentationClass' for computing mIoU and IoU
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/SegmentationClass/* {PATH}/Simple_does_it/Dataset/SegmentationClass/

Demo (See Usage for more details)

Download pretrain model training on VOC12 (train set size: 1464)

  • Pretrain model
    • Move files from VOC12_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 1020
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt --restore_target 1020   
    
  • Performance
set CRF mIoU
train X 64.93%
train O 66.90%
val X 39.03%
val O 42.54%

Download pretrain model training on VOC12 + SBD (train set size: 10582)

  • Pretrain model
    • Move files from VOC12_SBD_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 538
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name train.txt --restore_target 538
    
  • Performance
set CRF mIoU
train X 66.87%
train O 68.21%
val X 51.90%
val O 54.52%

Training (See Usage for more details)

Download pretrain vgg16

Extract annotations from 'Annotations' according to 'train.txt' or 'voc_train.txt' for VOC12 + SDB or VOC12

  • For VOC12 + SBD (train set size: 10582)
    • This will generate a 'train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py 
    
  • For VOC12 (train set size: 1464)
    • This will generate a 'voc_train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py --train_set_name voc_train.txt --train_pair_name voc_train_pairs.txt
    

Generate label for training by 'grabcut.py'

  • Result of grabcut for each bounding box will be stored at 'Grabcut_inst'
  • Result of grabcut for each image will be stored at 'Segmentation_label'
  • Result of grabcut for each image combing with image and bounding box will be stored at 'Grabcut_pairs'
  • Note: If the instance hasn't existed at 'Grabcut_inst', grabcut.py will grabcut that image
  • For VOC12 + SBD (train set size: 10582)
    python ./Preprocess/grabcut.py
    
  • For VOC12 (train set size: 1464)
    python ./Preprocess/grabcut.py --train_pair_name voc_train_pairs.txt
    

Train network

  • The event file for tensorboard will be stored at 'Logs'
  • Train on VOC12 + SBD (train set size: 10582)
    • This will consume lot of memory.
      • The train set is so large.
      • Data dtyp will be casted from np.uint8 to np.float16 for mean substraction.
    • Eliminate mean substraction for lower memory usage.
      • Change the dtype in ./Dataset/load.py from np.float16 to np.uint8
      • Comment mean substraction in ./Model/model.py
    python ./Model/model.py --is_train 1 --set_name train.txt   
    
  • Train on VOC12 (train set size: 1464)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt   
    

Testing (See Usage for more details)

Test network

  • Result will be stored at 'Pred_masks'
  • Result combing with image will be stored at 'Pred_pairs'
  • Result after dense CRF will be stored at 'CRF_masks'
  • Result after dense CRF combing with image will be stored at 'CRF_pairs'
  • Test on VOC12 (val set size: 1449)
    python ./Model/model.py --restore_target {num}
    

Performance (See Usage for more details)

Evaluate mIoU and IoU

  • Compute mIoU and IoU
    python ./Dataset/mIoU.py 
    

Usage

Parser_/parser.py

  • Parse the command line argument

Util/divied.py

  • Generating train.txt and test.txt according to 'JPEGImages'
  • Not necessary
usage: divied.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                 [--train_set_ratio TRAIN_SET_RATIO]
                 [--train_set_name TRAIN_SET_NAME]
                 [--test_set_name TEST_SET_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default: Util/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_set_ratio TRAIN_SET_RATIO
                        ratio for training set, [0,10] (default: 7)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --test_set_name TEST_SET_NAME
                        name for testing set (default: val.txt)

Dataset/make_train.py

  • Extract annotations from 'Annotations' according to 'train.txt'
  • Content: {image name}###{image name + num + class + .png}###{bbox ymin}###{bbox xmin}###{bbox ymax}###{bbox xmax}###{class}
  • Example: 2011_003038###2011_003038_3_15.png###115###1###233###136###person
usage: make_train.py [-h] [--dataset DATASET]
                     [--train_set_name TRAIN_SET_NAME]
                     [--ann_dir_name ANN_DIR_NAME]
                     [--train_pair_name TRAIN_PAIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        Dataset/../Parser_/../Dataset)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --ann_dir_name ANN_DIR_NAME
                        name for annotation directory (default: Annotations)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)

Preprocess/grabcut.py

  • Grabcut a traditional computer vision method
  • Input bounding box and image then generating label for training
usage: grabcut.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                  [--train_pair_name TRAIN_PAIR_NAME]
                  [--grabcut_dir_name GRABCUT_DIR_NAME]
                  [--img_grabcuts_dir IMG_GRABCUTS_DIR]
                  [--pool_size POOL_SIZE] [--grabcut_iter GRABCUT_ITER]
                  [--label_dir_name LABEL_DIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Preprocess/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)
  --grabcut_dir_name GRABCUT_DIR_NAME
                        name for grabcut directory (default: Grabcut_inst)
  --img_grabcuts_dir IMG_GRABCUTS_DIR
                        name for image with grabcuts directory (default:
                        Grabcut_pairs)
  --pool_size POOL_SIZE
                        pool for multiprocess (default: 4)
  --grabcut_iter GRABCUT_ITER
                        grabcut iteration (default: 3)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)

Model/model.py

  • Deeplab-Largefov
usage: model.py [-h] [--dataset DATASET] [--set_name SET_NAME]
                [--label_dir_name LABEL_DIR_NAME]
                [--img_dir_name IMG_DIR_NAME] [--classes CLASSES]
                [--batch_size BATCH_SIZE] [--epoch EPOCH]
                [--learning_rate LEARNING_RATE] [--momentum MOMENTUM]
                [--keep_prob KEEP_PROB] [--is_train IS_TRAIN]
                [--save_step SAVE_STEP] [--pred_dir_name PRED_DIR_NAME]
                [--pair_dir_name PAIR_DIR_NAME] [--crf_dir_name CRF_DIR_NAME]
                [--crf_pair_dir_name CRF_PAIR_DIR_NAME] [--width WIDTH]
                [--height HEIGHT] [--restore_target RESTORE_TARGET]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Model/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --classes CLASSES     number of classes for segmentation (default: 21)
  --batch_size BATCH_SIZE
                        batch size for training (default: 16)
  --epoch EPOCH         epoch for training (default: 2000)
  --learning_rate LEARNING_RATE
                        learning rate for training (default: 0.01)
  --momentum MOMENTUM   momentum for optimizer (default: 0.9)
  --keep_prob KEEP_PROB
                        probability for dropout (default: 0.5)
  --is_train IS_TRAIN   training or testing [1 = True / 0 = False] (default:
                        0)
  --save_step SAVE_STEP
                        step for saving weight (default: 2)
  --pred_dir_name PRED_DIR_NAME
                        name for prediction masks directory (default:
                        Pred_masks)
  --pair_dir_name PAIR_DIR_NAME
                        name for pairs directory (default: Pred_pairs)
  --crf_dir_name CRF_DIR_NAME
                        name for crf prediction masks directory (default:
                        CRF_masks)
  --crf_pair_dir_name CRF_PAIR_DIR_NAME
                        name for crf pairs directory (default: CRF_pairs)
  --width WIDTH         width for resize (default: 513)
  --height HEIGHT       height for resize (default: 513)
  --restore_target RESTORE_TARGET
                        target for restore (default: 0)

Dataset/mIoU.py

  • Compute mIoU and IoU
usage: mIoU.py [-h] [--dataset DATASET] [--set_name SET_NAME]
               [--GT_dir_name GT_DIR_NAME] [--Pred_dir_name PRED_DIR_NAME]
               [--classes CLASSES]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Dataset/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --GT_dir_name GT_DIR_NAME
                        name for ground truth directory (default:
                        SegmentationClass)
  --Pred_dir_name PRED_DIR_NAME
                        name for prediction directory (default: CRF_masks)
  --classes CLASSES     number of classes (default: 21)

Dataset/load.py

  • Loading data for training / testing according to train.txt / val.txt

Dataset/save_result.py

  • Save result during testing

Dataset/voc12_class.py

  • Map the class to grayscale value

Dataset/voc12_color.py

  • Map the grayscale value to RGB

Postprocess/dense_CRF.py

  • Dense CRF a machine learning method
  • Refine the result

Reference

Owner
CHENG-YOU LU
CHENG-YOU LU
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022