NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

Overview

NExT-QA

We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2 'Weak Accept's).

NExT-QA is a VideoQA benchmark targeting the explanation of video contents. It challenges QA models to reason about the causal and temporal actions and understand the rich object interactions in daily activities. We set up both multi-choice and open-ended QA tasks on the dataset. This repo. provides resources for multi-choice QA; open-ended QA is found in NExT-OE. For more details, please refer to our dataset page.

Environment

Anaconda 4.8.4, python 3.6.8, pytorch 1.6 and cuda 10.2. For other libs, please refer to the file requirements.txt.

Install

Please create an env for this project using anaconda (should install anaconda first)

>conda create -n videoqa python=3.6.8
>conda activate videoqa
>git clone https://github.com/doc-doc/NExT-QA.git
>pip install -r requirements.txt #may take some time to install

Data Preparation

Please download the pre-computed features and QA annotations from here. There are 4 zip files:

  • ['vid_feat.zip']: Appearance and motion feature for video representation. (With code provided by HCRN).
  • ['qas_bert.zip']: Finetuned BERT feature for QA-pair representation. (Based on pytorch-pretrained-BERT).
  • ['nextqa.zip']: Annotations of QAs and GloVe Embeddings.
  • ['models.zip']: Learned HGA model.

After downloading the data, please create a folder ['data/feats'] at the same directory as ['NExT-QA'], then unzip the video and QA features into it. You will have directories like ['data/feats/vid_feat/', 'data/feats/qas_bert/' and 'NExT-QA/'] in your workspace. Please unzip the files in ['nextqa.zip'] into ['NExT-QA/dataset/nextqa'] and ['models.zip'] into ['NExT-QA/models/'].

(You are also encouraged to design your own pre-computed video features. In that case, please download the raw videos from VidOR. As NExT-QA's videos are sourced from VidOR, you can easily link the QA annotations with the corresponding videos according to the key 'video' in the ['nextqa/.csv'] files, during which you may need the map file ['nextqa/map_vid_vidorID.json']).

Usage

Once the data is ready, you can easily run the code. First, to test the environment and code, we provide the prediction and model of the SOTA approach (i.e., HGA) on NExT-QA. You can get the results reported in the paper by running:

>python eval_mc.py

The command above will load the prediction file under ['results/'] and evaluate it. You can also obtain the prediction by running:

>./main.sh 0 val #Test the model with GPU id 0

The command above will load the model under ['models/'] and generate the prediction file. If you want to train the model, please run

>./main.sh 0 train # Train the model with GPU id 0

It will train the model and save to ['models']. (The results may be slightly different depending on the environments)

Results

Methods Text Rep. Acc_C Acc_T Acc_D Acc Text Rep. Acc_C Acc_T Acc_D Acc
BlindQA GloVe 26.89 30.83 32.60 30.60 BERT-FT 42.62 45.53 43.89 43.76
EVQA GloVe 28.69 31.27 41.44 31.51 BERT-FT 42.64 46.34 45.82 44.24
STVQA [CVPR17] GloVe 36.25 36.29 55.21 39.21 BERT-FT 44.76 49.26 55.86 47.94
CoMem [CVPR18] GloVe 35.10 37.28 50.45 38.19 BERT-FT 45.22 49.07 55.34 48.04
HME [CVPR19] GloVe 37.97 36.91 51.87 39.79 BERT-FT 46.18 48.20 58.30 48.72
HCRN [CVPR20] GloVe 39.09 40.01 49.16 40.95 BERT-FT 45.91 49.26 53.67 48.20
HGA [AAAI20] GloVe 35.71 38.40 55.60 39.67 BERT-FT 46.26 50.74 59.33 49.74
Human - 87.61 88.56 90.40 88.38 - 87.61 88.56 90.40 88.38

Multi-choice QA vs. Open-ended QA

vis mc_oe

Citation

@article{xiao2021next,
  title={NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions},
  author={Xiao, Junbin and Shang, Xindi and Yao, Angela and Chua, Tat-Seng},
  journal={arXiv preprint arXiv:2105.08276},
  year={2021}
}

Todo

  1. Open evaluation server and release test data.
  2. Release spatial feature.
  3. Release RoI feature.

Acknowledgement

Our reproduction of the methods are based on the respective official repositories, we thank the authors to release their code. If you use the related part, please cite the corresponding paper commented in the code.

Owner
Junbin Xiao
PhD Candidate
Junbin Xiao
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022