This is an implementation of PIFuhd based on Pytorch

Overview

Open-PIFuhd

This is a unofficial implementation of PIFuhd

PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization(CVPR2020)

Implementation

  • Training Coarse PIFuhd
  • Training Fine PIFuhd
  • Inference
  • metrics(P2S, Normal, Chamfer)
  • Gan generates front normal and back normal (Under designing)

Note that the pipeline I design do not consider normal map generated by pix2pixHD because it is Not main difficulty we reimplement PIFuhd. By the way, I will release GAN +PIFuhd soon.

Prerequisites

  • PyTorch>=1.6
  • json
  • PIL
  • skimage
  • tqdm
  • cv2
  • trimesh with pyembree
  • pyexr
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • (optional) egl related packages for rendering with headless machines. (use apt install libgl1-mesa-dri libegl1-mesa libgbm1 for ubuntu users)
  • face3d

Data processed

We use Render People as our datasets but the data size is 296 (270 for training while 29 for testing) which is less than paper said 500.

Note that we are unable to release the full training data due to the restriction of commertial scans.

Initial data

I modified part codes in PIFu (branch: PIFu-modify, and download it into your project) in order to could process dirs where your model save

bash ./scripts/process_obj.sh [--dir_models_path]
#e.g.  bash ./scripts/process_obj.sh ../Garment/render_people_train/

Rendering data

I modified part codes in PIFu in order to could process dirs where your model save

python -m apps.render_data -i [--dir_models_path] -o [--save_processed_models_path] -s 1024 [Optional: -e]
#-e means use GPU rendering
#e.g.python -m apps.render_data -i ../Garment/render_people_train/ -o ../Garment/render_gen_1024_train/ -s 1024 -e

Render Normal Map

Rendering front and back normal map In Current Project

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, bash ./scripts/generate.sh

# the params you could modify from ./configs/PIFuhd_Render_People_HG_normal_map.py
# the import params here is 
#  e.g. input_dir = '../Garment/render_gen_1024_train/' and cache= "../Garment/cache/render_gen_1024/rp_train/"
# inpud_dir means output render_gen_1024_train
# cache means where save intermediate results like sample points from mesh

After processing all datasets, Tree-Structured Directory looks like following:

render_gen_1024_train/
├── rp_aaron_posed_004_BLD
│   ├── GEO
│   ├── MASK
│   ├── PARAM
│   ├── RENDER
│   ├── RENDER_NORMAL
│   ├── UV_MASK
│   ├── UV_NORMAL
│   ├── UV_POS
│   ├── UV_RENDER
│   └── val.txt
├── rp_aaron_posed_005_BLD
	....

Training

Training coarse-pifuhd

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, Where you could modify all you want.

Note that this project I designed is friend, which means you could easily replace origin backbone, head by yours :)

bash ./scripts/train_pfhd_coarse.sh

Training Fine-PIFuhd

the same as coarse PIFuhd, all config params is set in ./configs/PIFuhd_Render_People_HG_fine.py,

bash ./scripts/train_pfhd_fine.sh

**If you meet memory problems about GPUs, pls reduce batch_size in ./config/*.py **

Inference

bash ./scripts/test_pfhd_coarse.sh
#or 
bash ./scripts/test_pfhd_fine.sh

the results will be saved into checkpoints/PIFuhd_Render_People_HG_[coarse/fine]/gallery/test/model_name/*.obj, then you could use meshlab to view the generate models.

Metrics

export MESA_GL_VERSION_OVERRIDE=3.3 
# eval coarse-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_coarse.py
# eval fine-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_fine.py

Demo

we provide rendering code using free models in RenderPeople. This tutorial uses rp_dennis_posed_004 model. Please download the model from this link and unzip the content. Use following command to reconstruct the model:


Debug

I provide bool params(debug in all of config files) to you to check whether your points sampled from mesh is right. There are examples:

Visualization

As following show, left is input image, mid is the results of coarse-pifuhd, right is fine-pifuhd

Reconstruction on Render People Datasets

Note that our training datasets are less than official one(270 for our while 450 for paper) resulting in the performance changes in some degree

IoU ACC recall P2S Normal Chamfer
PIFu 0.748 0.880 0.856 1.801 0.1446 2.00
Coarse-PIFuhd(+Front and back normal) 0.865(5cm) 0.931(5cm) 0.923(5cm) 1.242 0.1205 1.4015
Fine-PIFuhd(+Front and back normal) 0.813(3cm) 0.896(3cm) 0.904(5cm) - 0.1138 -

There is an issue why p2s of fine-pifuhd is bit large than coarse-pifuhd. This is because I do not add some post-processing to clean some chaos in reconstruction. However, the details of human mesh produced by fine-pifuhd are obviously better than coarse-pifuhd.

About Me

I hope that this project could provide some contributions to our communities, especially for implicit-field.

By the way, If you think the project is helpful to you, pls don’t forget to star this project : )

Related Research

Monocular Real-Time Volumetric Performance Capture (ECCV 2020) Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) Shunsuke Saito, Tomas Simon, Jason Saragih, Hanbyul Joo

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020) Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Robust 3D Self-portraits in Seconds (CVPR 2020) Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019) Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

Owner
Lingteng Qiu
good good study, day day up
Lingteng Qiu
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Vikrant Deshpande 1 Nov 17, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022