“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Overview

Data Augmentation for Cross-Domain Named Entity Recognition

Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio

License: MIT

This repository contains the implementations of the system described in the paper "Data Augmentation for Cross-Domain Named Entity Recognition" at EMNLP 2021 conference.

The main contribution of this paper is a novel neural architecture that can learn the textual patterns and effectively transform the text from a high-resource to a low-resource domain. Please refer to the paper for details.

Installation

We have updated the code to work with Python 3.9, Pytorch 1.9, and CUDA 11.1. If you use conda, you can set up the environment as follows:

conda create -n style_NER python==3.9
conda activate style_NER
conda install pytorch==1.9 cudatoolkit=11.1 -c pytorch

Also, install the dependencies specified in the requirements.txt:

pip install -r requirements.txt

Data

Please download the data with the following links: OntoNotes-5.0-NER-BIO and Temporal Twitter Corpus. We provide two toy datasets under the data/linearized_domain dictory for cross-domain mapping experiments and data/ner directory for NER experiments. After downloading the data with the links above, you may need to preprocess it so that it can have the same format as toy datasets and put them under the corresponding directory.

Data pre-processing

For data pre-processing, we provide some functions under the src/commons/preproc_domain.py and src/commons/preproc_ner.py directory. You can use them to convert the data to the json format for cross-domain mapping experiments.

Data post-processing

After generating the data, you may want to use the code under the src/commons/postproc_domain.py directory to convert the data from json to CoNLL format for named entity recognition experiments.

Running

There are two main stages to run this project.

  1. Cross-domain mapping with cross-domain autoencoder
  2. Named entity recognition with sequencel labeling model

1. Cross-domain Mapping

Training

You can train a model from pre-defined config files in this repo with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json

The code saves a model checkpoint after every epoch if the model improves (either lower loss or higher metric). You will notice that a directory is created using the experiment id (e.g. style_NER/checkpoints/cdar1.0-nw-sm/). You can resume training by running the same command.

Two phases training: our training algorithm includes two phases: 1) in the first phase, we train the model with only denoising reconstruction and domain classification, and 2) in the second phase, we train the model together with denoising reconstruction, detransforming reconstruction, and the domain classification. To do this, you can simply set lambda_cross as 0 for the first phase and 1 for the second phase in the config file.

    ...
    "lambda_coef":{
        "lambda_auto": 1.0,
        "lambda_adv": 10.0,
        "lambda_cross": 1.0
    }
    ...
Evaluate

To evaluate the model, use --mode eval (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode eval
Generation

To evaluate the model, use --mode generate (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode generate

2. Named Entity Recognition

We fine-tune a sequence labeling model (BERT + Linear) to evaluate our cross-domain mapping method. After generating the data, you can add the path of the generated data into the configuration file and run the code with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_ner/main.py --config configs/exp_ner/ner1.0-nw-sm.json

Citation

(Comming soon...)

Contact

Feel free to get in touch via email to [email protected].

Owner
<a href=[email protected]">
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022