Outlier Exposure with Confidence Control for Out-of-Distribution Detection

Overview

PWC PWC PWC PWC

OOD-detection-using-OECC

This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution Detection. Accepted as a Journal article in Neurocomputing, 2021.

1. What is Outlier Exposure with Confidence Control (OECC)?

Outlier Exposure with Confidence Control (OECC) is a technique that helps a Deep Neural Network (DNN) learn how to distinguish in- and out-of-distribution (OOD) data without requiring access to OOD samples. This technique has been shown that it can generalize to new distibutions. To learn how to distinguish in- and out-of-distribution samples, OECC makes a DNN to be highly uncertain for OOD samples by producing a uniform distribution at the output of the softmax layer. At the same time, it also makes it to make predictions for in-distribution samples with an average confidence close to its training accuracy, i.e. it controls its confidence.

The overall OECC loss function outperforms the previous SOTA results in OOD detection with OE both in image and text classification tasks. Additionally, we experimentally show in the paper that by combining OECC with SOTA post-training methods for OOD detection like the Mahalanobis Detector or the Gramian Matrices, one can achieve SOTA results in the OOD detection task.

2. Visualize the idea behind OECC

Figure. Histogram of softmax probabilities with CIFAR-10 as in-distribution data Din and Places365 as Out-of-Distribution (OOD) data Dout. Note that Din and Dout are disjoint. Left: Standard maximum softmax probability detector. Right: Maximum softmax probability detector using OECC.

3. Download Datasets

Some of the less common datasets can be downloaded by the following links: 80 Million Tiny Images, Icons-50, Textures, Chars74K, and Places365. Please also try this link in case the previous link is not working 80 Million Tiny Images.

4. How to Run

Each folder has its own separate README file with full details describing how to run the provided code.

5. Citation

If you find this useful in your research, please consider citing:

@article{PAPADOPOULOS2021138,
    title = {Outlier exposure with confidence control for out-of-distribution detection},
    journal = {Neurocomputing},
    volume = {441},
    pages = {138-150},
    year = {2021},
    issn = {0925-2312},
    doi = {https://doi.org/10.1016/j.neucom.2021.02.007},
    url = {https://www.sciencedirect.com/science/article/pii/S0925231221002393},
    author = {Aristotelis-Angelos Papadopoulos and Mohammad Reza Rajati and Nazim Shaikh and Jiamian Wang},
    keywords = {Out-of-distribution detection, Regularization, Anomaly detection, Deep neural networks, Outlier exposure, Calibration}
}

6. Code References

A part of the code has been based on the publicly available codes of Outlier Exposure and Mahalanobis.

Owner
Nazim Shaikh
Nazim Shaikh
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022