GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

Overview

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger is an open-source toolkit for grammatical profiling for language learning. It can analyze text in English and Chinese and show you grammatical items included in the input, along with its estimated difficulty.

Usage

GrammarTagger is written in Python (3.7+) and AllenNLP (2.1.0+). If you have conda installed, you can set up the environment as follows:

git clone https://github.com/octanove/grammartagger.git
cd grammartagger
conda create -n grammartagger python=3.7
conda activate grammartagger
pip install -r requirements.txt

Also, download the pretrained models (see below). After these steps, you can run GrammarTagger as follows:

English:

echo 'He loves to learn new languages, and last month he practiced some lessons in Spanish.' | python scripts/predict.py model-en-multi.tar.gz | jq
{
  "spans": [
    {
      "span": [0, 3],
      "tokens": ["[CLS]", "he", "loves", "to"],
      "label": "194:VP.SV.AFF"
    },
    {
      "span": [2, 2],
      "tokens": ["loves"],
      "label": "60:TA.PRESENT.does.AFF"
    },
    {
      "span": [2, 4],
      "tokens": ["loves", "to", "learn"],
      "label": "101:TO.VV_to_do"
    },
    ...
  ],
  "tokens": [
      "[CLS]", "he", "loves", "to", "learn", "new", "languages", ",",
      "and", "last", "month", "he", "practiced", "some", "lessons", "in", "spanish", ".", "[SEP]"
  ],
  "level_probs": {
    "c2": 0.008679441176354885,
    "b2": 0.005526999477297068,
    "c1": 0.05267713591456413,
    "b1": 0.06360447406768799,
    "a2": 0.06990284472703934,
    "a1": 0.7954732775688171
  }
}

Chinese:

$ echo '她住得很远,我想送她回去。' | python scripts/predict.py model-zh-multi.tar.gz | jq
{
  "spans": [
    {
      "span": [2, 5],
      "tokens": ["住", "得", "很", "远"],
      "label": "2.12.1:V 得 A:(using adverbs)"
    },
    {
      "span": [4, 4]
      "tokens": ["很"],
      "label": "1.06.2:很:very"
    },
    {
      "span": [8, 8],
      "tokens": ["想"],
      "label": "1.08.1:想:to want"
    }
  ],
  "tokens": ["[CLS]", "她", "住", "得", "很", "远", ",", "我", "想", "送", "她", "回", "去", "。", "[SEP]"],
  "level_probs": {
    "HSK 6": 9.971807230613194e-06,
    "HSK 5": 0.0011904890416190028,
    "HSK 3": 0.005279902834445238,
    "HSK 4": 0.00014815296162851155,
    "HSK 2": 0.9917035102844238,
    "HSK 1": 0.0016456041485071182
  }
}

Technical details

GrammarTagger is based on pretrained contextualizers, namely BERT (Devlin et al. 2019), and span classification. See the following paper for more details.

Hagiwara et al. 2021. GrammarTagger: A Multilingual, Minimally-Supervised Grammar Profiler for Language Education

Pretrained models

These pretrained models are licensed under CC BY-NC-ND 4.0 for academic/personal uses. If you are interested in a commercial license, please contact [email protected]. We are also working on improved models with wider grammar coverage and higher accuracy.

Owner
Octanove Labs
Octanove Labs
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022