Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Overview

Google Text-To-Speech Batch Prompt File Maker

forthebadge forthebadge

Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pro! This repository contains a tool for generating Google Text-To-Speech audio files in batch. It is ideal for offline prompts creation with Google voices for application in IVRs

In order to use this repository, clone the contents in your local environment with the following console command:

git clone https://github.com/ponchotitlan/google_text-to-speech_prompt_maker.git

Once cloned, follow the next steps for environment setup:

1) GCP account setup

Before adjusting up the contents of this project, it is neccesary to setup the Cloud Text-to-Speech API in your Google Cloud project:

  1. Follow the official documentation for activating this API and creating a Service Account
  2. Generate a JSON key associated to this Service Account
  3. Save this JSON key file in the same location as the contents of this repository

2) CSV and YAML files

Prepare a CSV document with the texts that you want to convert into prompt audio files. The CSV must have the following structure:

    <FILE NAME WITHOUT THE EXTENSION> , <PROMPT TEXT OR COMPLIANT SSML GRAMMAR>

An Excel export to CSV format should be enough for rendering a compatible structure, ever since the text within a cell is dumped between quotes if it contains spaces. An example of a compliant file with SSML prompts would look like the following:

    sample_prompt_01,"<speak>Welcome to ACME. How can I help you today?</speak>"
    sample_prompt_02,"<speak>Press 1 for sales. <break time=200ms/>Press 2 for Tech Support. <break time=200ms/>Or stay in the line for agent support</speak>"
    ...

Additionally, prepare a YAML document with the structure mentioned in the setup.yaml file included in this repository. The fields are the following:

# CSV format is: FILE_NAME , PROMPT_CONTENT
csv_prompts_file: <my_csv_file.csv>

google_settings:
    # ROUTE TO THE JSON KEY ASSOCIATED TO GCP. IF THE ROUTE HAS SPACES, ADD QUOTES TO THE VALUE
    JSON_key: <my_key.json>

    # PROMPT TYPE. ALLOWED VALUES ARE:
    # normal | SSML
    prompt_type: SSML

    # FILE FORMAT. ALLOWED VALUES ARE:
    # wav | mp3
    output_audio_format: wav

    # COMPLIANT LANGUAGE CODE. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE CODES
    language_code: es-US

    # COMPLIANT VOICE NAME. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE NAMES
    voice_name: es-US-Wavenet-C

    # COMPLIANT VOICE GENDER. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE GENDERS WITH THE SELECTED VOICE ABOVE
    voice_gender: MALE

    # COMPLIANT AUDIO ENCODING. SUPPORTED TYPES ARE:
    # AUDIO_ENCODING_UNSPECIFIED | LINEAR16 | MP3 | OGG_OPUS
    audio_encoding: LINEAR16

3) Dependencies installation

Install the requirements in a virtual environment with the following command:

pip install -r requirements.txt

4) Inline calling

The usage of the script requires the following inline elements:

usage: init.py [-h] [-b BATCH] configurationYAML

Batch prompt generation with Google TTS services

positional arguments:
  configurationYAML     YAML file with operation settings

optional arguments:
  -h, --help            show this help message and exit
  -b BATCH, --batch BATCH
                        Amount of rows in the CSV file to process at the same
                        time. Suggested max value is 100. Default is 10

An example is:

py init.py setup.yaml

The command prompt will show logs based on the status of each row:

✅ Prompt sample_prompt_04.WAV created successfully!
✅ Prompt sample_prompt_01.WAV created successfully!
✅ Prompt sample_prompt_03.WAV created successfully!
✅ Prompt sample_prompt_02.WAV created successfully!

The corresponding audio files will be saved in the same location where this script is executed.

5) Encoding for Cisco CVP Audio Elements

Unfortunately, Google Text-To-Speech service does not support the compulsory 8-bit μ-law encoding as per the Python SDK documentation (I am currently working on a Java version which does support this encoding. This option might be released in the Python SDK in the future). However, there are many online services such as this one for achieving the aforementioned. Audacity can also be used for the purpose. Follow this tutorial for compatible file conversion steps. There's a more straightforward tool which has been proven useful for me in order to process batch files with the CVP compatible settings.

The resulting files can later be uploaded into the Tomcat server for usage within a design in Cisco CallStudio. The route within the CVP Windows Server VM is the following:

    C:\Cisco\CVP\VXMLServer\Tomcat\webapps\CVP\audio

Please refer to the Official Cisco Documentation for more information.

Crafted with ❤️ by Alfonso Sandoval - Cisco

You might also like...
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

voice2json is a collection of command-line tools for offline speech/intent recognition on Linux
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

A Python module made to simplify the usage of Text To Speech and Speech Recognition.
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

Command Line Text-To-Speech using Google TTS
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

Releases(v1.2.0)
Owner
Ponchotitlán
💻 ☕ 🥃 Let's talk about networks coding, automation and orchestration autour a cup of coffee, and a sip of tequila;
Ponchotitlán
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
Saptak Bhoumik 14 May 24, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022