๐Ÿš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

Overview

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutting edge technologies, this repository provides an easy-to-use toolkit for running and fine-tuning the state-of-the-art dense retrievers, namely ๐Ÿš€ RocketQA. This toolkit has the following advantages:

  • State-of-the-art: ๐Ÿš€ RocketQA provides our well-trained models, which achieve SOTA performance on many dense retrieval datasets. And it will continue to update the latest models.
  • First-Chinese-model: ๐Ÿš€ RocketQA provides the first open source Chinese dense retrieval model, which is trained on millions of manual annotation data from DuReader.
  • Easy-to-use: By integrating this toolkit with JINA, ๐Ÿš€ RocketQA can help developers build an end-to-end retrieval system and question answering system with several lines of code.

News

  • April 29, 2022: Training function is added to RocketQA toolkit. And the baseline models of DuReaderretrieval (both cross encoder and dual encoder) are available in RocketQA models.
  • March 30, 2022: The baseline of DuReaderretrieval leaderboard was released. [code/model]
  • March 30, 2022: We released DuReaderretrieval, a large-scale Chinese benchmark for passage retrieval. The dataset contains over 90K questions and 8M passages from Baidu Search. [paper] [data]
  • December 3, 2021: The toolkit of dense retriever RocketQA was released, including the first chinese dense retrieval model trained on DuReader.
  • August 26, 2021: RocketQA v2 was accepted by EMNLP 2021. [code/model]
  • May 5, 2021: PAIR was accepted by ACL 2021. [code/model]
  • March 11, 2021: RocketQA v1 was accepted by NAACL 2021. [code/model]

Installation

We provide two installation methods: Python Installation Package and Docker Environment

Install with Python Package

First, install PaddlePaddle.

# GPU version:
$ pip install paddlepaddle-gpu

# CPU version:
$ pip install paddlepaddle

Second, install rocketqa package (latest version: 1.1.0):

$ pip install rocketqa

NOTE: this toolkit MUST be running on Python3.6+ with PaddlePaddle 2.0+.

Install with Docker

docker pull rocketqa/rocketqa

docker run -it docker.io/rocketqa/rocketqa bash

Getting Started

Refer to the examples below, you can build and run your own Search Engine with several lines of code. We also provide a Playground with JupyterNotebook. Try ๐Ÿš€ RocketQA straight away in your browser!

Running with JINA

JINA is a cloud-native neural search framework to build SOTA and scalable deep learning search applications in minutes. Here is a simple example to build a Search Engine based on JINA and RocketQA.

cd examples/jina_example
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
# JINA will automaticlly start a web service for you
python3 app.py index toy_data/test.tsv

# Try some questions related to the indexed Documents
python3 app.py query_cli

Please view JINA example to know more.

Running with FAISS

We also provide a simple example built on Faiss.

cd examples/faiss_example/
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
python3 index.py zh ../data/dureader.para test_index

# Start a web service on http://localhost:8888/rocketqa
python3 rocketqa_service.py zh ../data/dureader.para test_index

# Try some questions related to the indexed Documents
python3 query.py

API

You can also easily integrate ๐Ÿš€ RocketQA into your own task. We provide two types of models, ERNIE-based dual encoder for answer retrieval and ERNIE-based cross encoder for answer re-ranking. For running our models, you can use the following functions.

Load model

rocketqa.available_models()

Returns the names of the available RocketQA models. To know more about the available models, please see the code comment.

rocketqa.load_model(model, use_cuda=False, device_id=0, batch_size=1)

Returns the model specified by the input parameter. It can initialize both dual encoder and cross encoder. By setting input parameter, you can load either RocketQA models returned by "available_models()" or your own checkpoints.

Dual encoder

Dual-encoder returned by "load_model()" supports the following functions:

model.encode_query(query: List[str])

Given a list of queries, returns their representation vectors encoded by model.

model.encode_para(para: List[str], title: List[str])

Given a list of paragraphs and their corresponding titles (optional), returns their representations vectors encoded by model.

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (dot product between two representation vectors).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own dual encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Cross encoder

Cross-encoder returned by "load_model()" supports the following function:

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (probability that the paragraph is the query's right answer).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own cross encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Examples

Following the examples below, you can retrieve the vector representations of your documents and connect ๐Ÿš€ RocketQA to your own tasks.

Run RocketQA Model

To run RocketQA models, you should set the parameter model in 'load_model()' with RocketQA model name returned by 'available_models()'.

import rocketqa

query_list = ["trigeminal definition"]
para_list = [
    "Definition of TRIGEMINAL. : of or relating to the trigeminal nerve.ADVERTISEMENT. of or relating to the trigeminal nerve. ADVERTISEMENT."]

# init dual encoder
dual_encoder = rocketqa.load_model(model="v1_marco_de", use_cuda=True, device_id=0, batch_size=16)

# encode query & para
q_embs = dual_encoder.encode_query(query=query_list)
p_embs = dual_encoder.encode_para(para=para_list)
# compute dot product of query representation and para representation
dot_products = dual_encoder.matching(query=query_list, para=para_list)

Train Your Own Model

To train your own models, you can use train() function with your dataset and parameters. Training data contains 4 columns: query, title, para, label (0 or 1), separated by "\t". For detail about parameters and dataset, please refer to './examples/example.py'

import rocketqa

# init cross encoder, and set device and batch_size
cross_encoder = rocketqa.load_model(model="zh_dureader_ce", use_cuda=True, device_id=0, batch_size=32)

# finetune cross encoder based on "zh_dureader_ce_v2"
cross_encoder.train('./examples/data/cross.train.tsv', 2, 'ce_models', save_steps=1000, learning_rate=1e-5, log_folder='log_ce')

Run Your Own Model

To run your own models, you should set parameter model in 'load_model()' with a JSON config file.

import rocketqa

# init cross encoder
cross_encoder = rocketqa.load_model(model="./examples/ce_models/config.json", use_cuda=True, device_id=0, batch_size=16)

# compute relevance of query and para
relevance = cross_encoder.matching(query=query_list, para=para_list)

config is a JSON file like this

{
    "model_type": "cross_encoder",
    "max_seq_len": 384,
    "model_conf_path": "zh_config.json",
    "model_vocab_path": "zh_vocab.txt",
    "model_checkpoint_path": ${YOUR_MODEL},
    "for_cn": true,
    "share_parameter": 0
}

Folder examples provides more details.

Citations

If you find RocketQA v1 models helpful, feel free to cite our publication RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering

@inproceedings{rocketqa_v1,
    title="RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering",
    author="Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu and Haifeng Wang",
    year="2021",
    booktitle = "In Proceedings of NAACL"
}

If you find PAIR models helpful, feel free to cite our publication PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

@inproceedings{rocketqa_pair,
    title="PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval",
    author="Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of ACL Findings"
}

If you find RocketQA v2 models helpful, feel free to cite our publication RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

@inproceedings{rocketqa_v2,
    title="RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking",
    author="Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of EMNLP"
}

If you find DuReaderretrieval dataset helpful, feel free to cite our publication DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine

@inproceedings{DuReader_retrieval,
    title="DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine",
    author="Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu and Haifeng Wang",
    year="2022"
}

License

This repository is provided under the Apache-2.0 license.

Contact Information

For help or issues using RocketQA, please submit a Github issue.

For other communication or cooperation, please contact Jing Liu ([email protected]) or scan the following QR Code.

A demo of chinese asr

chinese_asr_demo ไธ€ไธช็ซฏๅˆฐ็ซฏ็š„ไธญๆ–‡่ฏญ้Ÿณ่ฏ†ๅˆซๆจกๅž‹่ฎญ็ปƒใ€ๆต‹่ฏ•ๆก†ๆžถ ๅ…ทๅค‡ๆ•ฐๆฎ้ข„ๅค„็†ใ€ๆจกๅž‹่ฎญ็ปƒใ€่งฃ็ ใ€่ฎก็ฎ—wer็ญ‰็ญ‰ๅŠŸ่ƒฝ ่ฎญ็ปƒๆ•ฐๆฎ ่ฎญ็ปƒๆ•ฐๆฎ้‡‡็”จthchs_30๏ผŒ

4 Dec 09, 2021
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
๋‰ด์Šค ๋„๋ฉ”์ธ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ (21-1ํ•™๊ธฐ ์กธ์—… ํ”„๋กœ์ ํŠธ)

๋‰ด์Šค ๋„๋ฉ”์ธ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ๋‰ด์Šค๊ธฐ์‚ฌ์— ๋Œ€ํ•œ ์งˆ์˜์‘๋‹ต ์„œ๋น„์Šค ๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ง„ํ–‰ํ•œ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. ์•ฝ 3๊ฐœ์›”๊ฐ„ ( 21. 03 ~ 21. 05 ) ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ Transformer ์•„ํ‚คํ…์ณ ๊ธฐ๋ฐ˜์˜ Encoder๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•œ๊ตญ์–ด ์งˆ์˜์‘๋‹ต ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ

TaegyeongEo 4 Jul 08, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022