🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

Overview

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutting edge technologies, this repository provides an easy-to-use toolkit for running and fine-tuning the state-of-the-art dense retrievers, namely 🚀 RocketQA. This toolkit has the following advantages:

  • State-of-the-art: 🚀 RocketQA provides our well-trained models, which achieve SOTA performance on many dense retrieval datasets. And it will continue to update the latest models.
  • First-Chinese-model: 🚀 RocketQA provides the first open source Chinese dense retrieval model, which is trained on millions of manual annotation data from DuReader.
  • Easy-to-use: By integrating this toolkit with JINA, 🚀 RocketQA can help developers build an end-to-end retrieval system and question answering system with several lines of code.

News

  • April 29, 2022: Training function is added to RocketQA toolkit. And the baseline models of DuReaderretrieval (both cross encoder and dual encoder) are available in RocketQA models.
  • March 30, 2022: The baseline of DuReaderretrieval leaderboard was released. [code/model]
  • March 30, 2022: We released DuReaderretrieval, a large-scale Chinese benchmark for passage retrieval. The dataset contains over 90K questions and 8M passages from Baidu Search. [paper] [data]
  • December 3, 2021: The toolkit of dense retriever RocketQA was released, including the first chinese dense retrieval model trained on DuReader.
  • August 26, 2021: RocketQA v2 was accepted by EMNLP 2021. [code/model]
  • May 5, 2021: PAIR was accepted by ACL 2021. [code/model]
  • March 11, 2021: RocketQA v1 was accepted by NAACL 2021. [code/model]

Installation

We provide two installation methods: Python Installation Package and Docker Environment

Install with Python Package

First, install PaddlePaddle.

# GPU version:
$ pip install paddlepaddle-gpu

# CPU version:
$ pip install paddlepaddle

Second, install rocketqa package (latest version: 1.1.0):

$ pip install rocketqa

NOTE: this toolkit MUST be running on Python3.6+ with PaddlePaddle 2.0+.

Install with Docker

docker pull rocketqa/rocketqa

docker run -it docker.io/rocketqa/rocketqa bash

Getting Started

Refer to the examples below, you can build and run your own Search Engine with several lines of code. We also provide a Playground with JupyterNotebook. Try 🚀 RocketQA straight away in your browser!

Running with JINA

JINA is a cloud-native neural search framework to build SOTA and scalable deep learning search applications in minutes. Here is a simple example to build a Search Engine based on JINA and RocketQA.

cd examples/jina_example
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
# JINA will automaticlly start a web service for you
python3 app.py index toy_data/test.tsv

# Try some questions related to the indexed Documents
python3 app.py query_cli

Please view JINA example to know more.

Running with FAISS

We also provide a simple example built on Faiss.

cd examples/faiss_example/
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
python3 index.py zh ../data/dureader.para test_index

# Start a web service on http://localhost:8888/rocketqa
python3 rocketqa_service.py zh ../data/dureader.para test_index

# Try some questions related to the indexed Documents
python3 query.py

API

You can also easily integrate 🚀 RocketQA into your own task. We provide two types of models, ERNIE-based dual encoder for answer retrieval and ERNIE-based cross encoder for answer re-ranking. For running our models, you can use the following functions.

Load model

rocketqa.available_models()

Returns the names of the available RocketQA models. To know more about the available models, please see the code comment.

rocketqa.load_model(model, use_cuda=False, device_id=0, batch_size=1)

Returns the model specified by the input parameter. It can initialize both dual encoder and cross encoder. By setting input parameter, you can load either RocketQA models returned by "available_models()" or your own checkpoints.

Dual encoder

Dual-encoder returned by "load_model()" supports the following functions:

model.encode_query(query: List[str])

Given a list of queries, returns their representation vectors encoded by model.

model.encode_para(para: List[str], title: List[str])

Given a list of paragraphs and their corresponding titles (optional), returns their representations vectors encoded by model.

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (dot product between two representation vectors).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own dual encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Cross encoder

Cross-encoder returned by "load_model()" supports the following function:

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (probability that the paragraph is the query's right answer).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own cross encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Examples

Following the examples below, you can retrieve the vector representations of your documents and connect 🚀 RocketQA to your own tasks.

Run RocketQA Model

To run RocketQA models, you should set the parameter model in 'load_model()' with RocketQA model name returned by 'available_models()'.

import rocketqa

query_list = ["trigeminal definition"]
para_list = [
    "Definition of TRIGEMINAL. : of or relating to the trigeminal nerve.ADVERTISEMENT. of or relating to the trigeminal nerve. ADVERTISEMENT."]

# init dual encoder
dual_encoder = rocketqa.load_model(model="v1_marco_de", use_cuda=True, device_id=0, batch_size=16)

# encode query & para
q_embs = dual_encoder.encode_query(query=query_list)
p_embs = dual_encoder.encode_para(para=para_list)
# compute dot product of query representation and para representation
dot_products = dual_encoder.matching(query=query_list, para=para_list)

Train Your Own Model

To train your own models, you can use train() function with your dataset and parameters. Training data contains 4 columns: query, title, para, label (0 or 1), separated by "\t". For detail about parameters and dataset, please refer to './examples/example.py'

import rocketqa

# init cross encoder, and set device and batch_size
cross_encoder = rocketqa.load_model(model="zh_dureader_ce", use_cuda=True, device_id=0, batch_size=32)

# finetune cross encoder based on "zh_dureader_ce_v2"
cross_encoder.train('./examples/data/cross.train.tsv', 2, 'ce_models', save_steps=1000, learning_rate=1e-5, log_folder='log_ce')

Run Your Own Model

To run your own models, you should set parameter model in 'load_model()' with a JSON config file.

import rocketqa

# init cross encoder
cross_encoder = rocketqa.load_model(model="./examples/ce_models/config.json", use_cuda=True, device_id=0, batch_size=16)

# compute relevance of query and para
relevance = cross_encoder.matching(query=query_list, para=para_list)

config is a JSON file like this

{
    "model_type": "cross_encoder",
    "max_seq_len": 384,
    "model_conf_path": "zh_config.json",
    "model_vocab_path": "zh_vocab.txt",
    "model_checkpoint_path": ${YOUR_MODEL},
    "for_cn": true,
    "share_parameter": 0
}

Folder examples provides more details.

Citations

If you find RocketQA v1 models helpful, feel free to cite our publication RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering

@inproceedings{rocketqa_v1,
    title="RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering",
    author="Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu and Haifeng Wang",
    year="2021",
    booktitle = "In Proceedings of NAACL"
}

If you find PAIR models helpful, feel free to cite our publication PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

@inproceedings{rocketqa_pair,
    title="PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval",
    author="Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of ACL Findings"
}

If you find RocketQA v2 models helpful, feel free to cite our publication RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

@inproceedings{rocketqa_v2,
    title="RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking",
    author="Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of EMNLP"
}

If you find DuReaderretrieval dataset helpful, feel free to cite our publication DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine

@inproceedings{DuReader_retrieval,
    title="DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine",
    author="Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu and Haifeng Wang",
    year="2022"
}

License

This repository is provided under the Apache-2.0 license.

Contact Information

For help or issues using RocketQA, please submit a Github issue.

For other communication or cooperation, please contact Jing Liu ([email protected]) or scan the following QR Code.

मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
1 Jun 28, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022