SAINT PyTorch implementation

Overview

SAINT-pytorch

A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arxiv.org/abs/2002.07033.

SAINT: Separated Self-AttentIve Neural Knowledge Tracing. SAINT has an encoder-decoder structure where exercise and response embedding sequence separately enter the encoder and the decoder respectively, which allows to stack attention layers multiple times.

SAINT model architecture

Usage

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import copy

from saint import saint, random_data

seq_len = 100
total_ex = 1200
total_cat = 234
total_in = 2

in_ex, in_cat, in_de = random_data(64, 
                                seq_len , 
                                total_ex, 
                                total_cat, 
                                total_in)


model = saint(dim_model=128,
            num_en=6,
            num_de=6,
            heads_en=8,
            heads_de=8,
            total_ex=total_ex,
            total_cat=total_cat,
            total_in=total_in )

outs = model(in_ex, in_cat, in_de)

print(outs.shape)
# torch.Size([64, 100, 1])

Parameters

  • dim_model: int.
    Dimension of model ( embeddings, attention, linear layers).
  • num_en: int.
    Number of encoder layers.
  • num_de: int.
    Number of decoder layers.
  • heads_en: int.
    Number of heads in multi-head attention block in each layer of encoder.
  • heads_de: int.
    Number of heads in multi-head attention block in each layer of decoder.
  • total_ex: int.
    Total number of unique excercise.
  • total_cat: int.
    Total number of unique concept categories.
  • total_in: int.
    Total number of unique interactions.

todo

  • change positional embedding to sine.

Citations

@article{choi2020towards,
  title={Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing},
  author={Choi, Youngduck and Lee, Youngnam and Cho, Junghyun and Baek, Jineon and Kim, Byungsoo and Cha, Yeongmin and Shin, Dongmin and Bae, Chan and Heo, Jaewe},
  journal={arXiv preprint arXiv:2002.07033},
  year={2020}
}
@misc{vaswani2017attention,
    title   = {Attention Is All You Need},
    author  = {Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin},
    year    = {2017},
    eprint  = {1706.03762},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Owner
Arshad Shaikh
MSc Data Science _ University Department of Computer Science, Mumbai University.
Arshad Shaikh
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022