This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

Overview

POS-Tagger

This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

What is Part-of-Speech Tagging?

In corpus linguistics, part-of-speech tagging (POS tagging, PoS tagging, or POST), also known as "grammatical tagging," is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context. Once performed by hand, POS tagging is now done in the context of computational linguistics, using algorithms which associate discrete terms, as well as "hidden" parts of speech, by a set of descriptive tags. POS-tagging algorithms fall into two distinctive categories: rule-based and stochastic. Because applying a rule-based model to predict tags in a sequence is cumbersome and restricted to a computational linguist's understanding of allowable sentence construction in the context of language productivity, I'll instead be taking a stochastic approach to assigning POS tags to words in a sequence through the use of Trigram Hidden Markov Models.

What are Trigram Hidden Markov Models (HMMs)?

The hidden Markov model, or HMM for short, is a probabilistic sequence model that assigns a label to each unit in a sequence of observations (i.e, input sentences). The model computes a probability distribution over possible sequences of POS labels (using a training corpus) and then chooses the best label sequence that maximizes the probability of generating the observed sequence. The HMM is widely used in natural language processing since language consists of sequences at many levels such as sentences, phrases, words, or even characters. The HMM can be enhanced to incorporate not only unobservable parts-of-speech, but also observable components (i.e., the actual order of words in a sequence) through the use of a probability distribution over the set of trigrams in the given corpus. This allows our model to distinguish between homophones, or words that share the same spelling or pronunciation, but differ in meaning and parts-of-speech (i.e., "rose" as in "rose bush" (NN) and "rose" (VBD) as in the past tense of "rise").

Owner
Raihan Ahmed
Pursuing degrees in Computer Science and Linguistics.
Raihan Ahmed
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

A simple implementation of N-gram language model.

About A simple implementation of N-gram language model. Requirements numpy Data preparation Corpus Training data for the N-gram model, a text file lik

4 Nov 24, 2021
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022