Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

Overview

IMDB Sentiment Analysis

This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial Intelligence and Automation

Training

To train a model (CNN, LSTM, Transformer), simply run

python train.py --cfg <./model/xxx> --save <./save/>

You can change the configuration in config.

Model

LSTM

we follow the origin LSTM as possible

lstm

CNN

we adopt the methods mentioned in Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

cnn

Transformer

We use the original Transformer Encoder as Attention is all you need and use the concept of CLS Token as BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

trans

Experiment result

Model Comparison

Model Accuracy
LSTM 89.02
Transformer 87.47
CNN 88.66
Fine-tuned BERT 93.43

LSTM

Batch size
Batch size Loss Accuracy
64 0.4293 0.8802
128 0.4298 0.8818
256 0.4304 0.8836
512 0.4380 0.8807
Embedding Size
Embedding size train Loss train Accuracy val loss val accuracy
32 0.4021 0.9127 0.4419 0.8707
64 0.3848 0.9306 0.4297 0.8832
128 0.3772 0.9385 0.4265 0.8871
256 0.3584 0.9582 0.4303 0.8825
512 0.3504 0.9668 0.4295 0.8838
Drop out
Drop out rate Train Loss Train Accuracy Test loss Test Accuracy
0.0 0.3554 0.9623 0.4428 0.8704
0.1 0.3475 0.9696 0.4353 0.8780
0.2 0.3516 0.9652 0.4312 0.8825
0.3 0.3577 0.9589 0.4292 0.8844
0.4 0.3587 0.9576 0.4272 0.8868
0.5 0.3621 0.9544 0.4269 0.8865
0.6 0.3906 0.9242 0.4272 0.8863
0.7 0.3789 0.9356 0.4303 0.8826
0.8 0.3939 0.9204 0.4311 0.8826
0.9 0.4211 0.8918 0.4526 0.8584
Weight decay
Weight decay train loss train accuracy test loss test accuracy
1.0e-8 0.3716 0.9436 0.4261 0.8876
1.0e-7 0.3803 0.9349 0.4281 0.8862
1.0e-6 0.3701 0.9456 0.4264 0.8878
1.0e-5 0.3698 0.9461 0.4283 0.8850
1.0e-4 0.3785 0.9377 0.4318 0.8806
Number layers

Number of LSTM blocks

Number layers train loss train accuracy test loss test accuracy
1 0.3786 0.9364 0.4291 0.8844
2 0.3701 0.9456 0.4264 0.8878
3 0.3707 0.9451 0.4243 0.8902
4 0.3713 0.9446 0.4279 0.8857

CNN

out channel size
out size train acc test acc
8 0.9679 0.8743
16 0.9791 0.8767
32 0.9824 0.8811
64 0.9891 0.8848
128 0.9915 0.8824
256 0.9909 0.8827
512 0.9920 0.8841
1024 0.9959 0.8833
multi scale filter
Number train acc test acc
1 [5] 0.9698 0.8748
2 [5, 11] 0.9852 0.8827
3 [5, 11, 17] 0.9890 0.8850
4 [5, 11, 17, 23] 0.9915 0.8848
5 [5, 11, 17, 23, 29] 0.9924 0.8842
6 [5, 11, 17, 23, 29, 35] 0.9930 0.8836
step train acc test acc
2 [5 7 9] 0.9878 0.8816
4 [5 9 11] 0.9890 0.8816
6 [5 11 17] 0.9919 0.8834
8 [5 13 21] 0.9884 0.8836
10[5 15 25] 0.9919 0.8848
12[5 17 29] 0.9898 0.8812
14[5 29 43] 0.9935 0.8809
Owner
Daniel
Daniel
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022