๐Ÿฆ… Pretrained BigBird Model for Korean (up to 4096 tokens)

Overview

Pretrained BigBird Model for Korean

What is BigBird โ€ข How to Use โ€ข Pretraining โ€ข Evaluation Result โ€ข Docs โ€ข Citation

ํ•œ๊ตญ์–ด | English

Apache 2.0 Issues linter DOI

What is BigBird?

BigBird: Transformers for Longer Sequences์—์„œ ์†Œ๊ฐœ๋œ sparse-attention ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋กœ, ์ผ๋ฐ˜์ ์ธ BERT๋ณด๋‹ค ๋” ๊ธด sequence๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿฆ… Longer Sequence - ์ตœ๋Œ€ 512๊ฐœ์˜ token์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT์˜ 8๋ฐฐ์ธ ์ตœ๋Œ€ 4096๊ฐœ์˜ token์„ ๋‹ค๋ฃธ

โฑ๏ธ Computational Efficiency - Full attention์ด ์•„๋‹Œ Sparse Attention์„ ์ด์šฉํ•˜์—ฌ O(n2)์—์„œ O(n)์œผ๋กœ ๊ฐœ์„ 

How to Use

  • ๐Ÿค— Huggingface Hub์— ์—…๋กœ๋“œ๋œ ๋ชจ๋ธ์„ ๊ณง๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:)
  • ์ผ๋ถ€ ์ด์Šˆ๊ฐ€ ํ•ด๊ฒฐ๋œ transformers>=4.11.0 ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. (MRC ์ด์Šˆ ๊ด€๋ จ PR)
  • BigBirdTokenizer ๋Œ€์‹ ์— BertTokenizer ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (AutoTokenizer ์‚ฌ์šฉ์‹œ BertTokenizer๊ฐ€ ๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.)
  • ์ž์„ธํ•œ ์‚ฌ์šฉ๋ฒ•์€ BigBird Tranformers documentation์„ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("monologg/kobigbird-bert-base")  # BigBirdModel
tokenizer = AutoTokenizer.from_pretrained("monologg/kobigbird-bert-base")  # BertTokenizer

Pretraining

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Pretraining BigBird] ์ฐธ๊ณ 

Hardware Max len LR Batch Train Step Warmup Step
KoBigBird-BERT-Base TPU v3-8 4096 1e-4 32 2M 20k
  • ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต
  • ITC (Internal Transformer Construction) ๋ชจ๋ธ๋กœ ํ•™์Šต (ITC vs ETC)

Evaluation Result

1. Short Sequence (<=512)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Short Sequence Dataset] ์ฐธ๊ณ 

NSMC
(acc)
KLUE-NLI
(acc)
KLUE-STS
(pearsonr)
Korquad 1.0
(em/f1)
KLUE MRC
(em/rouge-w)
KoELECTRA-Base-v3 91.13 86.87 93.14 85.66 / 93.94 59.54 / 65.64
KLUE-RoBERTa-Base 91.16 86.30 92.91 85.35 / 94.53 69.56 / 74.64
KoBigBird-BERT-Base 91.18 87.17 92.61 87.08 / 94.71 70.33 / 75.34

2. Long Sequence (>=1024)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Long Sequence Dataset] ์ฐธ๊ณ 

TyDi QA
(em/f1)
Korquad 2.1
(em/f1)
Fake News
(f1)
Modu Sentiment
(f1-macro)
KLUE-RoBERTa-Base 76.80 / 78.58 55.44 / 73.02 95.20 42.61
KoBigBird-BERT-Base 79.13 / 81.30 67.77 / 82.03 98.85 45.42

Docs

Citation

KoBigBird๋ฅผ ์‚ฌ์šฉํ•˜์‹ ๋‹ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ์ธ์šฉํ•ด์ฃผ์„ธ์š”.

@software{jangwon_park_2021_5654154,
  author       = {Jangwon Park and Donggyu Kim},
  title        = {KoBigBird: Pretrained BigBird Model for Korean},
  month        = nov,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.5654154},
  url          = {https://doi.org/10.5281/zenodo.5654154}
}

Contributors

Jangwon Park and Donggyu Kim

Acknowledgements

KoBigBird๋Š” Tensorflow Research Cloud (TFRC) ํ”„๋กœ๊ทธ๋žจ์˜ Cloud TPU ์ง€์›์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ๋ฉ‹์ง„ ๋กœ๊ณ ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹  Seyun Ahn๋‹˜๊ป˜ ๊ฐ์‚ฌ๋ฅผ ์ „ํ•ฉ๋‹ˆ๋‹ค.

You might also like...
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Generating Korean Slogans with phonetic and structural repetition
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ
Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ

korean extractive summarization 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ Leaderboard Notice Text Summarization with Pretrained Encoders์— ๋‚˜์˜ค๋Š” bertsumext๋ชจ๋ธ(ext

Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis ์™œ ํ•œ๊ตญ์–ด ๊ฐ์ • ๋‹ค์ค‘๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒƒ์ผ๊นŒ?์—์„œ ์‹œ์ž‘๋œ ํ”„๋กœ์ ํŠธ Environment: Pytorch, Da

Korean Sentence Embedding Repository

Korean-Sentence-Embedding ๐Ÿญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in a matter of minutes. Based on our experiments with a wide range of benchmarks, ProteinBERT usually achieves state-of-the-art performance. ProteinBERT is built on TenforFlow/Keras.

IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet ๐Ÿฆ ๐Ÿ‡ฎ๐Ÿ‡ฉ 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

Crie tokens de autenticaรงรฃo รญntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) รฉ uma bilioteca criada para ser utilizada na geraรงรฃo de tokens seguros e รญntegros, ou seja, nรฃ

Comments
  • Pretraining Epoch ์งˆ๋ฌธ

    Pretraining Epoch ์งˆ๋ฌธ

    Checklist

    • [x] I've searched the project's issues

    โ“ Question

    ์•ˆ๋…•ํ•˜์„ธ์š” ์ €๋Š” ํ˜„์žฌ ์นœ๊ตฌ๋“ค๊ณผ ํ•จ๊ป˜ 4096 ํ† ํฐ์„ ์ž…๋ ฅ๋ฐ›์•„ ์š”์•ฝ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒ˜์Œ์—” ๋น…๋ฒ„๋“œ + ๋ฒ„ํŠธ ์กฐํ•ฉ์œผ๋กœ ํ•ด๋ณด๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ, ์ด๋ฏธ monologg ๋‹˜๊ป˜์„œ ๋งŒ๋“ค์–ด์ฃผ์…จ๋”๋ผ๊ตฌ์š” ใ…Žใ…Ž ๊ทธ๋ž˜์„œ ๋กฑํฌ๋จธ + ๋ฐ”ํŠธ + ํŽ˜๊ฐ€์ˆ˜์Šค ์กฐํ•ฉ์œผ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. pretrained๋œ KoBart๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์–ดํ…์…˜์„ ๋กฑํฌ๋จธ๋กœ ๋ฐ”๊พผ ํ›„, ํŽ˜๊ฐ€์ˆ˜์Šค task๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

    ํ˜„์žฌ 13GB์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•„์„œ ์ „์ฒ˜๋ฆฌ์™€ ๋ฐ์ดํ„ฐ๋กœ๋” ์ž‘์„ฑ, ๋ชจ๋ธ ์ฝ”๋“œ๊นŒ์ง€๋Š” ์™„๋ฃŒํ•œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ์ฃผ ๋‚ด๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

    ์ €ํฌ๊ฐ€ ๊ฐ€์ง„ GPU๋กœ๋Š” ๋Œ€๋žต ์ดํ‹€์ด๋ฉด 1 ์—ํฌํฌ๋ฅผ ๋Œ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์€๋ฐ, monologg๋‹˜๊ป˜์„œ๋Š” KoBirBird ๋ชจ๋ธ ๊ฐœ๋ฐœ ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ๋„์…จ๋Š”์ง€ ์—ฌ์ญค๋ณด๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.

    ์•„๋ฌด๋ž˜๋„ pretrained ๋œ ๋ชจ๋ธ์„ ๊ฐ€์ ธ๋‹ค ์“ฐ๋‹ค๋ณด๋‹ˆ ์—ํฌํฌ๋ฅผ ๋งŽ์ด ๋Œ ํ•„์š”๋Š” ์—†์„ ๊ฒƒ ๊ฐ™์€๋ฐ, ๊ธฐ์ค€์ ์œผ๋กœ ์‚ผ๊ณ  ์‹ถ์–ด์„œ์š”!

    ๋ง์ด ๊ธธ์–ด์กŒ๋Š”๋ฐ ์š”์•ฝํ•˜์ž๋ฉด, KoBirBird ํ•™์Šต ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ฃผ์…จ๋Š”์ง€ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ๊ธฐ์ค€์€ ๋ฌด์—‡์œผ๋กœ ์‚ผ์œผ์…จ๋Š”์ง€๋„ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.

    question 
    opened by KimJaehee0725 2
  • Specific information about this model.

    Specific information about this model.

    Checklist

    • [ x ] I've searched the project's issues

    โ“ Question

    • You mentioned "๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต" and I want to know the size of total corpus for pre-training.

    • Also I want to know the vocab size of this model.

    ๐Ÿ“Ž Additional context

    question 
    opened by midannii 2
  • Fix some minors

    Fix some minors

    Description

    ์ฝ”๋“œ์™€ ์ฃผ์„ ๋“ฑ์„ ์ฝ๋‹ค๊ฐ€ ๋ณด์ธ ์ž‘์€ ์˜คํƒ€ ๋“ฑ์„ ์ˆ˜์ •ํ–ˆ์Šต๋‹ˆ๋‹ค

    ๋‹ค์–‘ํ•œ ๋…ธํ•˜์šฐ๋ฅผ ์•„๋‚Œ์—†์ด ๊ณต์œ ํ•ด์ฃผ์‹  @monologg , @donggyukimc ์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ์ดํ›„์—๋Š” GPU ํ™˜๊ฒฝ์—์„œ finetuning์„ ํ…Œ์ŠคํŠธํ•ด ๋ณผ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค ๊ณ ๋ง™์Šต๋‹ˆ๋‹ค.

    Related Issue

    chore 
    opened by sackoh 0
Releases(v1.0.0)
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a รฉtรฉ organisรฉ et rรฉparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0ๆ‹ฅๆœ‰ไธฐๅฏŒ็š„ๆจกๅž‹ๅบ“ใ€็ฎ€ๆดๆ˜“็”จ็š„APIไธŽ้ซ˜ๆ€ง่ƒฝ็š„ๅˆ†ๅธƒๅผ่ฎญ็ปƒ็š„่ƒฝๅŠ›๏ผŒๆ—จๅœจไธบ้ฃžๆกจๅผ€ๅ‘่€…ๆๅ‡ๆ–‡ๆœฌๅปบๆจกๆ•ˆ็އ๏ผŒๅนถๆไพ›ๅŸบไบŽPaddlePaddle 2.0็š„NLP้ข†ๅŸŸๆœ€ไฝณๅฎž่ทตใ€‚

6.9k Jan 01, 2023
Final Project Bootcamp Zero

The Quest (Pygame) Descripciรณn Este es el repositorio de cรณdigo The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
็ซฏๅˆฐ็ซฏ็š„้•ฟๆœฌๆ–‡ๆ‘˜่ฆๆจกๅž‹๏ผˆๆณ•็ ”ๆฏ2020ๅธๆณ•ๆ‘˜่ฆ่ต›้“๏ผ‰

็ซฏๅˆฐ็ซฏ็š„้•ฟๆ–‡ๆœฌๆ‘˜่ฆๆจกๅž‹๏ผˆๆณ•็ ”ๆฏ2020ๅธๆณ•ๆ‘˜่ฆ่ต›้“๏ผ‰

่‹ๅ‰‘ๆž—(Jianlin Su) 334 Jan 08, 2023
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
PyTorch implementation of the NIPS-17 paper "Poincarรฉ Embeddings for Learning Hierarchical Representations"

Poincarรฉ Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincarรฉ Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Train ๐Ÿค—transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022