performing moving objects segmentation using image processing techniques with opencv and numpy

Overview

Moving Objects Segmentation

header

On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced method relies on two important functions:

  • Create clean background
  • Generate mask sequence

Create clean background

Create clean background

The main idea is taking several frames from the video sequence and estimating the covered regions by any distracting elements that come in front of the clean background, this method only works if the frames are aligned and the camera is not moving otherwise the method is not going to work.

createCleanBG(input_path, memorize, skipping, save_result, output_path)

input_path (string): path of input video sequence.

memorize (int): number of frames that are used to generate a clean background, usually around 10 to 15 frames works fine.

skipping (int): number of frames to skip before caching another frame to generate the clean background, if the motion on the video is too slow consider increasing this number.

save_result (boolean): boolean parameter to decide whether to save the generated result or not.

output_path (string): output path of the generated clean background.

Generate mask sequence

Mask sequence is generated by subtracting each video frame from the clean background, image adjustments are used to generate better masking results.

Vibrance

Vibrance adjustment increases the intensity of the low saturated colors in an image and leaves the saturated colors as it is, this adjustment is inspired by Adobe Photoshop filter, although the implementation is different because the desired target is not generating a plausible colors by human eyes but shifting the colors in the low saturated pixels to be more saturated, so after subtraction any slight difference in the colors would become more clearer after increasing the vibrance.

Brightening Shadows

This adjustment only affects the dark pixels of the image and increases its luminance, applying this adjustment would also create a wider range of values after the subtraction and it would become clearer to threshold and distinguish the difference in color values after brightening the dark pixels.

pre-processing

The figure below shows that applying image adjustments before segmentation would generate better segmentation results.

pre-processing effect

Applications

The generated masks could be used for many different purposes, for example it could be used to localize moving objects on a video footage.

localize moving objects

The generated masks could be used also on VFX production as luma matte to mask objects from the background.

VFX

Owner
Mohamed Magdy
Mohamed Magdy
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022