Winners of DrivenData's Overhead Geopose Challenge

Overview



Banner Image

Images shown are from the public Urban Semantic 3D Dataset, provided courtesy of DigitalGlobe

Goal of the Competition

Overhead satellite imagery provides critical, time-sensitive information for use in arenas such as disaster response, navigation, and security. Most current methods for using aerial imagery assume images are taken from directly overhead, known as near-nadir. However, the first images available are often taken from an angle — they are oblique. Effects from these camera orientations complicate useful tasks such as change detection, vision-aided navigation, and map alignment.

In this challenge, participants made satellite imagery taken from a significant angle more useful for time-sensitive applications such as disaster and emergency response

What's in This Repository

This repository contains code from winning competitors in the Overhead Geopose Challenge.

Winning code for other DrivenData competitions is available in the competition-winners repository.

Winning Submissions

Prediction Contest

All of the models below build on the solution provided in the benchmark blog post: Overhead Geopose Challenge - Benchmark. Additional solution details can be found in the reports folder inside the directory for each submission.

The weights for each winning model can be downloaded from the National Geospatial-Intelligence Agency's (NGA's) DataPort page.

Place Team or User Public Score Private Score Summary of Model
1 selim_sef 0.902184 0.902459 An EfficientNet V2 L encoder is used instead of the Resnet34 encoder because it has a huge capacity and is less prone to overfitting. The decoder is a UNet with more filters and additional convolution blocks for better handling of fine-grained details. MSE loss would produce imbalance for different cities, depending on building heights. The model is trained with an R2 loss for AGL/MAG outputs, which reflects the final competition metric and is more robust to noisy training data.
2 bloodaxe 0.889955 0.891393 I’ve trained a bunch of UNet-like models and averaged their predictions. Sounds simple, yet I used quite heavy encoders (B6 & B7) and custom-made decoders to produce very accurate height map predictions at original resolution. Another crucial part of the solution was extensive custom data augmentation for height, orientation, scale, GSD, and image RGB values.
3 o__@ 0.882882 0.882801 I ensembled the VFlow-UNet model using a large input resolution and a large backbone without downsampling. Better results were obtained when the model was trained on all images from the training set. The test set contains images of the same location as the images in the training set. This overlap was identified by image matching to improve the prediction results.
4 kbrodt 0.872775 0.873057 The model uses a UNet architecture with various encoders (efficientnet-b{6,7} and senet154) and has only one above-ground level (AGL) head and two heads in the bottleneck for scale and angle. The features are a random 512x512 crop of an aerial image, the city's one hot encoding, and ground sample distance (GSD). The model is trained with mean squared error (MSE) loss function for all targets (AGL, scale, angle) using AdamW optimizer with 1e-4 learning rate.

Model Write-up Bonus

Prediction rank Team or User Public Score Private Score Summary of Model
2 bloodaxe 0.889955 0.891393 See the "Prediction Contest" section above
5 chuchu 0.856847 0.855636 We conducted an empirical upper bound analysis, which suggested that the main errors are from height prediction and the rest are from angle prediction. To overcome the bottlenecks we proposed HR-VFLOW, which takes HRNet as backbone and adopts simple multi-scale fusion as multi-task decoders to predict height, magnitude, angle, and scale simultaneously. To handle the height variance, we first pretrained the model on all four cities and then transferred the pretrained model to each specific city for better city-wise performance.
7 vecxoz 0.852948 0.851828 First, I implemented training with automatic mixed precision in order to speed up training and facilitate experiments with the large architectures. Second, I implemented 7 popular decoder architectures and conducted extensive preliminary research of different combinations of encoders and decoders. For the most promising combinations I ran long training for at least 200 epochs to study best possible scores and training dynamics. Third, I implemented an ensemble using weighted average for height and scale target and circular average for angle target.

Approved for public release, 21-943

Owner
DrivenData
Data science competitions for social good.
DrivenData
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022