Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

Related tags

Deep Learningcoliee
Overview

COLIEE 2021 - task 2: Legal Case Entailment

This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the paper To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment. There has been mounting evidence that pretrained language models fine-tuned on large and diverse supervised datasets can transfer well to a variety of out-of-domain tasks. In this work, we investigate this transfer ability to the legal domain. For that, we participated in the legal case entailment task of COLIEE 2021, in which we use such models with no adaptations to the target domain. Our submissions achieved the highest scores, surpassing the second-best submission by more than six percentage points. Our experiments confirm a counter-intuitive result in the new paradigm of pretrained language models: that given limited labeled data, models with little or no adaption to the target task can be more robust to changes in the data distribution and perform better on held-out datasets than models fine-tuned on it.

Models

monoT5-zero-shot: We use a model T5 Large fine-tuned on MS MARCO, a dataset of approximately 530k query and relevant passage pairs. We use a checkpoint available at Huggingface’smodel hub that was trained with a learning rate of 10−3 using batches of 128 examples for 10k steps, or approximately one epoch of the MS MARCO dataset. In each batch, a roughly equal number of positive and negative examples are sampled.

monoT5: We further fine-tune monoT5-zero-shot on the COLIEE 2020 training set following a similar training procedure described for monoT5-zero-shot. The model is fine-tuned with a learning rate of 10−3 for 80 steps using batches of size 128, which corresponds to 20 epochs. Each batch has the same number of positive and negative examples.

DeBERTa: Decoding-enhanced BERT with disentangled attention(DeBERTa) improves on the original BERT and RoBERTa architectures by introducing two techniques: the disentangled attention mechanism and an enhanced mask decoder. Both improvements seek to introduce positional information to the pretraining procedure, both in terms of the absolute position of a token and the relative position between them. We fine-tune DeBERTa on the COLIEE 2020 training set following a similar training procedure described for monoT5.

DebertaT5 (Ensemble): We use the following method to combine the predictions of monoT5 and DeBERTa (both fine-tuned on COLIEE 2020 dataset): We concatenate the final set of paragraphs selected by each model and remove duplicates, preserving the highest score. It is important to note that our method does not combine scores between models. The final answer for each test example is composed of individual answers from one or both models. It ensures that only answers with a certain degree of confidence are maintained, which generally leads to an increase in precision.

Results

Model Train data Evaluation F1 Description
Median of submissions Coliee 58.60
Coliee 2nd best team Coliee 62.74
DeBERTa (ours) Coliee Coliee 63.39 Single model
monoT5 (ours) Coliee Coliee 66.10 Single model
monoT5-zero-shot (ours) MS Marco Coliee 68.72 Single model
DebertaT5 (ours) Coliee Coliee 69.12 Ensemble

In this table, we present the results. Our main finding is that our zero-shot model achieved the best result of a single model on 2021 test data, outperforming DeBERTa and monoT5, which were fine-tuned on the COLIEE dataset. As far as we know, this is the first time that a zero-shot model outperforms fine-tuned models in the task of legal case entailment. Given limited annotated data for fine-tuning and a held-out test data, such as the COLIEE dataset, our results suggest that a zero-shot model fine-tuned on a large out-of-domain dataset may be more robust to changes in data distribution and may generalize better on unseen data than models fine-tuned on a small domain-specific dataset. Moreover, our ensemble method effectively combines DeBERTa and monoT5 predictions,achieving the best score among all submissions (row 6). It is important to note that despite the performance of DebertaT5 being the best in the COLIEE competition, the ensemble method requires training time, computational resources and perhaps also data augmentation to perform well on the task, while monoT5-zero-shot does not need any adaptation. The model is available online and ready to use.

Conclusion

Based on those results, we question the common assumption that it is necessary to have labeled training data on the target domain to perform well on a task. Our results suggest that fine-tuning on a large labeled dataset may be enough.

How do I get the dataset?

Those who wish to use previous COLIEE data for a trial, please contact rabelo(at)ualberta.ca.

How do I evaluate?

As our best model is a zero-shot one, we provide only the evaluation script.

References

[1] Document Ranking with a Pretrained Sequence-to-Sequence Model

[2] DeBERTa: Decoding-enhanced BERT with Disentangled Attention

[3] ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law

[4] Proceedings of the Eigth International Competition on Legal Information Extraction/Entailment

How do I cite this work?

 @article{to_tune,
    title={To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment},
    author={Moraes, Guilherme and Rodrigues, Ruan and Lotufo, Roberto and Nogueira, Rodrigo},
    journal={ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law June 2021 Pages 295–300},
    url={https://dl.acm.org/doi/10.1145/3462757.3466103},
    year={2021}
}
Owner
NeuralMind
Deep Learning for NLP and image processing
NeuralMind
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022