A custom DeepStack model for detecting 16 human actions.

Overview

DeepStack_ActionNET

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 16 human actions present in the ActionNET Dataset dataset. Also included in this repository is that dataset with the YOLO annotations.

>> Watch Video Demo

  • Download DeepStack Model and Dataset
  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Download DeepStack Model and Dataset

You can download the pre-trained DeepStack_ActionNET model and the annotated dataset via the links below.

Create API and Detect Actions

The Trained Model can detect the following actions in images and videos.

  • calling
  • clapping
  • cycling
  • dancing
  • drinking
  • eating
  • fighting
  • hugging
  • kissing
  • laughing
  • listening-to-music
  • running
  • sitting
  • sleeping
  • texting
  • using-laptop

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model actionnetv2.pt from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\actionnet.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ActionNET model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom actionnet.pt model and now ready to start detecting actions images via the API endpoint http://localhost:80/v1/vision/custom/actionnet or http://your_machine_ip:80/v1/vision/custom/actionnet

  • Detect actions in image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/test.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/test_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: dancing
      Confidence: 0.91482425
      x_min: 270
      x_max: 516
      y_min: 18
      y_max: 480
      -----------------------
      

    • You can try running action detection for other images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here
You might also like...
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Comments
  • How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    Tell me how to load a custom action network model correctly v2.pt in the Deepstack server docker? Did I do the right thing?

    DeepStack: Version 2021.09.01 I created the /model store/detection folders and threw the action net file there v2.pt image

    After the reboot, I got a v1/vision/custom/action net v2 entry in the logs. Did I do the right thing? It just confuses me that there is a v1/vision/custom/action net v2 entry in the logs, and the rest are written like this.

    /v1/vision/face
    /v1/vision/face/recognize
    ....
    

    image

    Is it necessary to enter here as in the case of face and object recognition? image image

    opened by DivanX10 0
Releases(v2)
  • v2(Aug 26, 2021)

    Version 2 of the DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnetv2.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.995 [email protected]: 0.913

    Source code(tar.gz)
    Source code(zip)
    actionnetv2.pt(169.41 MB)
  • v1(Aug 14, 2021)

    A DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnet.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.9858 [email protected]: 0.8051

    Source code(tar.gz)
    Source code(zip)
    actionnet.pt(169.41 MB)
Owner
MOSES OLAFENWA
Software Engineer @Microsoft , A self-Taught computer programmer, Deep Learning, Computer Vision Researcher and Developer. Creator of ImageAI.
MOSES OLAFENWA
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
đź§  A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022