Pytorch implementation for RelTransformer

Overview

RelTransformer

Our Architecture

image

This is a Pytorch implementation for RelTransformer

The implementation for Evaluating on VG200 can be found here

Requirements

conda env create -f reltransformer_env.yml

Compilation

Compile the CUDA code in the Detectron submodule and in the repo:

cd $ROOT/lib
sh make.sh

Annotations

create a data folder at the top-level directory of the repository

# ROOT = path/to/cloned/repository
cd $ROOT
mkdir data

GQA

Download it here. Unzip it under the data folder. You should see a gvqa folder unzipped there. It contains seed folder called seed0 that contains .json annotations that suit the dataloader used in this repo.

Visual Genome

Download it here. Unzip it under the data folder. You should see a vg8k folder unzipped there. It contains seed folder called seed3 that contains .json annotations that suit the dataloader used in this repo.

Word2Vec Vocabulary

Create a folder named word2vec_model under data. Download the Google word2vec vocabulary from here. Unzip it under the word2vec_model folder and you should see GoogleNews-vectors-negative300.bin there.

Images

GQA

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/gvqa
mkdir images

Download GQA images from the here

Visual Genome

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vg8k
mkdir VG_100K

Download Visual Genome images from the official page. Unzip all images (part 1 and part 2) into VG_100K/. There should be a total of 108249 files.

Pre-trained Object Detection Models

Download pre-trained object detection models here. Unzip it under the root directory and you should see a detection_models folder there.

Evaluating Pre-trained Relationship Detection models

DO NOT CHANGE anything in the provided config files(configs/xx/xxxx.yaml) even if you want to test with less or more than 8 GPUs. Use the environment variable CUDA_VISIBLE_DEVICES to control how many and which GPUs to use. Remove the --multi-gpu-test for single-gpu inference.

Training Relationship Detection Models

It requires 8 GPUS for trianing.

GVQA

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --nw 8 --use_tfboard --seed 1 

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --nw 8 --use_tfboard --seed 1

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained networks, run

python tools/test_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

VG8K

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml  --nw 8 --use_tfboard --seed 3

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --nw 8 --use_tfboard --seed3

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained model with WCE loss function, run

python tools/test_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

Acknowledgements

This repository uses code based on the LTVRD source code by sherif, as well as code from the Detectron.pytorch repository by Roy Tseng.

Citing

If you use this code in your research, please use the following BibTeX entry.

@article{chen2021reltransformer,
  title={RelTransformer: Balancing the Visual Relationship Detection from Local Context, Scene and Memory},
  author={Chen, Jun and Agarwal, Aniket and Abdelkarim, Sherif and Zhu, Deyao and Elhoseiny, Mohamed},
  journal={arXiv preprint arXiv:2104.11934},
  year={2021}
}

Owner
Vision CAIR Research Group, KAUST
Vision CAIR Group, KAUST, supported by Mohamed Elhoseiny
Vision CAIR Research Group, KAUST
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023