CellRank's reproducibility repository.

Overview

CellRank's reproducibility repository

We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please either open an issue or contact as at [email protected] should you experience difficulties reproducing any result.

Manuscript, code and data

CellRank is published in Nature Methods and the software package can be found at our main website, cellrank.org. Raw published data is available from the Gene Expression Omnibus (GEO) under accession codes:

Processed data, including spliced and unspliced count abundances, is available on figshare. To ease reproducibility, our data examples can also be accessed through CellRank's dataset interface.

Navigating this repository

We've organized this repository along the categories below. For each item, you can click the link under nbviewer to open the notebook in the browser using nbviewer. There is no 1-1 mapping from figures to notebooks - some notebooks produce panels for several figures, and some figures contain panels from several notebooks. The tables we provide here make the connection between figures and notebooks explicit. At the top of each notebook, we indicate the package versions we use.

Results

Main Figures
Figure nbviewer Notebook Path
Fig. 1 link path
Fig. 2 link path
Fig. 3 link path
Fig. 4 link path
Fig. 5 Palantir link path
Fig. 5 STEMNET link path
Fig. 5 Velocyto link path
Fig. 5 FateID link path
Fig. 6 link path
Extended Data Figures
Figure nbviewer Notebook Path
Extended Data Fig. 1 NA (toy data) NA (toy data)
Extended Data Fig. 2 link path
Extended Data Fig. 3 link path
Extended Data Fig. 4 link path
Extended Data Fig. 5 link path
Extended Data Fig. 6 link path
Extended Data Fig. 7 link path
Extended Data Fig. 8 link path
Extended Data Fig. 9 link path
Extended Data Fig. 10 link path
Supplementary Figures
Figure nbviewer Notebook Path
Supplementary Fig. 1 link path
Supplementary Fig. 2 link path
Supplementary Fig. 3 link path
Supplementary Fig. 4 link path
Supplementary Fig. 5 link path
Supplementary Fig. 6 link path
Supplementary Fig. 7 link path
Supplementary Fig. 8 link path
Supplementary Fig. 9 link path
Supplementary Fig. 10 link path
Supplementary Fig. 11 link path
Supplementary Fig. 12 link1 link2 path1 path2
Supplementary Fig. 13 link path
Supplementary Fig. 14 link path
Supplementary Fig. 15 link path
Supplementary Fig. 16 link path
Supplementary Fig. 17 NA (microscopy results) NA (microscopy results)
Supplementary Tables
Table nbviewer Notebook Path
Supplementary Tab. 1 link path
Supplementary Tab. 2 link path
Supplementary Tab. 3 link path
Owner
Theis Lab
Institute of Computational Biology
Theis Lab
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
LBK 35 Dec 26, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022