Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

Overview

counterfactual-tpp

This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes.

Pre-requisites

This code depends on the following packages:

  1. networkx
  2. numpy
  3. pandas
  4. matplotlib

to generate map plots:

  1. GeoPandas
  2. geoplot

Code structure

  • src/counterfactual_tpp.py: Contains the code to sample rejected events using the superposition property and the algorithm to calculate the counterfactuals.
  • src/gumbel.py: Contains the utility functions for the Gumbel-Max SCM.
  • src/sampling_utils.py: Contains the code for the Lewis' thinning algorithm (thinning_T function) and some other sampling utilities.
  • src/hawkes/hawkes.py: Contains the code for sampling from the hawkes process using the superposition property of tpps. It also includes the algorithm for sampling a counterfactual sequence of events given a sequence of observed events for a Hawkes process.
  • src/hawkes/hawkes_example.ipynb: Contains an example of running algorithm 3 (in the paper) for both cases where we have (1) both observed and un-observed events, and (2) the case that we have only the observed events.
  • ebola/graph_generation.py: Contains code to build the Ebola network based on the network of connected districts. This code is adopted from the disease-control project.
  • ebola/dynamics.py: Contains code for sampling counterfactual sequence of infections given a sequence of observed infections from the SIR porcess (the calculate_counterfactual function). The rest of the code is adopted from the disease-control project, which simulates continuous-time SIR epidemics with exponentially distributed inter-event times.

The directory ebola/data/ebola contains the information about the Ebola network adjanceny matrix and the cleaned ebola outbreak data adopted from the disease-control project.

The directory ebola/map/geojson contains the geographical information of the districts studied in the Ebola outbreak dataset. The geojson files are obtained from Nominatim.

The directory ebola/map/overall_data contains data for generating the geographical maps in the paper, and includs the overall number of infection under applying different interventions.

The directories src/data_hawkes and src/data_inhomogeneous contain observational data used to generate Synthetic plots in the paper. You can use this data to re-generate paper's plots. Otherwise, you can simply generate new random samples by the code.

Experiments

Synthetic

Epidemiological

Citation

If you use parts of the code in this repository for your own research, please consider citing:

@article{noorbakhsh2021counterfactual,
        title={Counterfactual Temporal Point Processes},
        author={Noorbakhsh, Kimia and Gomez-Rodriguez, Manuel},
        journal={arXiv preprint arXiv:2111.07603},
        year={2021}
}
Owner
Networks Learning
Networks Learning group at MPI-SWS
Networks Learning
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022