Robust & Reliable Route Recommendation on Road Networks

Related tags

Deep LearningNeuroMLR
Overview

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks

This repository is the official implementation of NeuroMLR: Robust & Reliable Route Recommendation on Road Networks.

Introduction

Predicting the most likely route from a source location to a destination is a core functionality in mapping services. Although the problem has been studied in the literature, two key limitations remain to be addressed. First, a significant portion of the routes recommended by existing methods fail to reach the destination. Second, existing techniques are transductive in nature; hence, they fail to recommend routes if unseen roads are encountered at inference time. We address these limitations through an inductive algorithm called NEUROMLR. NEUROMLR learns a generative model from historical trajectories by conditioning on three explanatory factors: the current location, the destination, and real-time traffic conditions. The conditional distributions are learned through a novel combination of Lipschitz embeddings with Graph Convolutional Networks (GCN) on historical trajectories.

Requirements

Dependencies

The code has been tested for Python version 3.8.10 and CUDA 10.2. We recommend that you use the same.

To create a virtual environment using conda,

conda create -n ENV_NAME python=3.8.10
conda activate ENV_NAME

All dependencies can be installed by running the following commands -

pip install -r requirements.txt
pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric

Data

Download the preprocessed data and unzip the downloaded .zip file.

Set the PREFIX_PATH variable in my_constants.py as the path to this extracted folder.

For each city (Chengdu, Harbin, Porto, Beijing, CityIndia), there are two types of data:

1. Mapmatched pickled trajectories

Stored as a python pickled list of tuples, where each tuple is of the form (trip_id, trip, time_info). Here each trip is a list of edge identifiers.

2. OSM map data

In the map folder, there are the following files-

  1. nodes.shp : Contains OSM node information (global node id mapped to (latitude, longitude))
  2. edges.shp : Contains network connectivity information (global edge id mapped to corresponding node ids)
  3. graph_with_haversine.pkl : Pickled NetworkX graph corresponding to the OSM data

Training

After setting PREFIX_PATH in the my_constants.py file, the training script can be run directly as follows-

python train.py -dataset beijing -gnn GCN -lipschitz 

Other functionality can be toggled by adding them as arguments, for example,

python train.py -dataset DATASET -gpu_index GPU_ID -eval_frequency EVALUATION_PERIOD_IN_EPOCHS -epochs NUM_EPOCHS 
python train.py -traffic
python train.py -check_script
python train.py -cpu

Brief description of other arguments/functionality -

Argument Functionality
-check_script to run on a fixed subset of train_data, as a sanity test
-cpu forces computation on a cpu instead of the available gpu
-gnn can choose between a GCN or a GAT
-gnn_layers number of layers for the graph neural network used
-epochs number of epochs to train for
-percent_data percentage data used for training
-fixed_embeddings to make the embeddings static, they aren't learnt as parameters of the network
-embedding_size the dimension of embeddings used
-hidden_size hidden dimension for the MLP
-traffic to toggle the attention module

For exact details about the expected format and possible inputs please refer to the args.py and my_constants.py files.

Evaluation

The training code generates logs for evaluation. To evaluate any pretrained model, run

python eval.py -dataset DATASET -model_path MODEL_PATH

There should be two files under MODEL_PATH, namely model.pt and model_support.pkl (refer to the function save_model() defined in train.py to understand these files).

Pre-trained Models

You can find the pretrained models in the same zip as preprocessed data. To evaluate the models, set PREFIX_PATH in the my_constants.py file and run

python eval.py -dataset DATASET

Results

We present the performance results of both versions of NeuroMLR across five datasets.

NeuroMLR-Greedy

Dataset Precision(%) Recall(%) Reachability(%) Reachability distance (km)
Beijing 75.6 74.5 99.1 0.01
Chengdu 86.1 83.8 99.9 0.0002
CityIndia 74.3 70.1 96.1 0.03
Harbin 59.6 48.6 99.1 0.02
Porto 77.3 70.7 99.6 0.001

NeuroMLR-Dijkstra

Since NeuroMLR-Dijkstra guarantees reachability, the reachability metrics are not relevant here.

Dataset Precision(%) Recall(%)
Beijing 77.9 76.5
Chengdu 86.7 84.2
CityIndia 77.9 73.1
Harbin 66.1 49.6
Porto 79.2 70.9

Contributing

If you'd like to contribute, open an issue on this GitHub repository. All contributions are welcome!

PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022