Robust & Reliable Route Recommendation on Road Networks

Related tags

Deep LearningNeuroMLR
Overview

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks

This repository is the official implementation of NeuroMLR: Robust & Reliable Route Recommendation on Road Networks.

Introduction

Predicting the most likely route from a source location to a destination is a core functionality in mapping services. Although the problem has been studied in the literature, two key limitations remain to be addressed. First, a significant portion of the routes recommended by existing methods fail to reach the destination. Second, existing techniques are transductive in nature; hence, they fail to recommend routes if unseen roads are encountered at inference time. We address these limitations through an inductive algorithm called NEUROMLR. NEUROMLR learns a generative model from historical trajectories by conditioning on three explanatory factors: the current location, the destination, and real-time traffic conditions. The conditional distributions are learned through a novel combination of Lipschitz embeddings with Graph Convolutional Networks (GCN) on historical trajectories.

Requirements

Dependencies

The code has been tested for Python version 3.8.10 and CUDA 10.2. We recommend that you use the same.

To create a virtual environment using conda,

conda create -n ENV_NAME python=3.8.10
conda activate ENV_NAME

All dependencies can be installed by running the following commands -

pip install -r requirements.txt
pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric

Data

Download the preprocessed data and unzip the downloaded .zip file.

Set the PREFIX_PATH variable in my_constants.py as the path to this extracted folder.

For each city (Chengdu, Harbin, Porto, Beijing, CityIndia), there are two types of data:

1. Mapmatched pickled trajectories

Stored as a python pickled list of tuples, where each tuple is of the form (trip_id, trip, time_info). Here each trip is a list of edge identifiers.

2. OSM map data

In the map folder, there are the following files-

  1. nodes.shp : Contains OSM node information (global node id mapped to (latitude, longitude))
  2. edges.shp : Contains network connectivity information (global edge id mapped to corresponding node ids)
  3. graph_with_haversine.pkl : Pickled NetworkX graph corresponding to the OSM data

Training

After setting PREFIX_PATH in the my_constants.py file, the training script can be run directly as follows-

python train.py -dataset beijing -gnn GCN -lipschitz 

Other functionality can be toggled by adding them as arguments, for example,

python train.py -dataset DATASET -gpu_index GPU_ID -eval_frequency EVALUATION_PERIOD_IN_EPOCHS -epochs NUM_EPOCHS 
python train.py -traffic
python train.py -check_script
python train.py -cpu

Brief description of other arguments/functionality -

Argument Functionality
-check_script to run on a fixed subset of train_data, as a sanity test
-cpu forces computation on a cpu instead of the available gpu
-gnn can choose between a GCN or a GAT
-gnn_layers number of layers for the graph neural network used
-epochs number of epochs to train for
-percent_data percentage data used for training
-fixed_embeddings to make the embeddings static, they aren't learnt as parameters of the network
-embedding_size the dimension of embeddings used
-hidden_size hidden dimension for the MLP
-traffic to toggle the attention module

For exact details about the expected format and possible inputs please refer to the args.py and my_constants.py files.

Evaluation

The training code generates logs for evaluation. To evaluate any pretrained model, run

python eval.py -dataset DATASET -model_path MODEL_PATH

There should be two files under MODEL_PATH, namely model.pt and model_support.pkl (refer to the function save_model() defined in train.py to understand these files).

Pre-trained Models

You can find the pretrained models in the same zip as preprocessed data. To evaluate the models, set PREFIX_PATH in the my_constants.py file and run

python eval.py -dataset DATASET

Results

We present the performance results of both versions of NeuroMLR across five datasets.

NeuroMLR-Greedy

Dataset Precision(%) Recall(%) Reachability(%) Reachability distance (km)
Beijing 75.6 74.5 99.1 0.01
Chengdu 86.1 83.8 99.9 0.0002
CityIndia 74.3 70.1 96.1 0.03
Harbin 59.6 48.6 99.1 0.02
Porto 77.3 70.7 99.6 0.001

NeuroMLR-Dijkstra

Since NeuroMLR-Dijkstra guarantees reachability, the reachability metrics are not relevant here.

Dataset Precision(%) Recall(%)
Beijing 77.9 76.5
Chengdu 86.7 84.2
CityIndia 77.9 73.1
Harbin 66.1 49.6
Porto 79.2 70.9

Contributing

If you'd like to contribute, open an issue on this GitHub repository. All contributions are welcome!

FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023