The 3rd place solution for competition

Overview

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle

header

Team behind this solution:

  1. Artsiom Sanakoyeu [Homepage] [Twitter] [Telegram Channel] [LinkedIn]
  2. Dmytro Poplavskiy [Kaggle] [LinkedIn]
  3. Artsem Zhyvalkouski [Kaggle] [Twitter] [GitHub] [LinkedIn]

Explanation of the solution:

▶️ Video: link
📜 Blogpost: link
📝 Brief solution writeup: link

How to reproduce results

  1. [Optional] Set the paths in the configs. But the default paths should work as well.
  1. Install dependencies.
  • pip install -r requirements.txt
  • Apply patch to l5kit with ./apply_l5kit_patch.sh (it disables processing of rasterized images to allow rasterizer to return multiple results).
  1. Download and prepare data.
bash prepare_data_train.sh
  1. Train 1st level models.
bash train.sh
  1. Run inference of 1st level models on the test set.
    You may need to change which chekpoints to load when predicting (in predict_test_l1.sh), as the best epoch may change after you retrain the models.
bash prepare_data_test.sh
bash predict_test_l1.sh
  1. Train 2nd level model on the predicts of the 1st level models on the test set.
cd src/2nd_level && python train.py

Make sure you've set all paths right in 2nd_level/config.py w.r.t. the 2nd_level directory.

  1. Predict on the test set using the 2nd level model.
cd src/2nd_level && python infer.py

The file witn final predictions will be saved to `src/2nd_level/submission.csv'.

Directory structure example (i.e., how it should look like after everything is trained and predicted) is in directory_structure.txt.

Extra

  • To skip training the 1st level models, you can download the pretrained weights by running bash download_1st_level_weights.sh.
  • To skip training and inference of the 1st level models, you can download all predicts. More details on this are in src/1st_level/submissions.
  • More details on how to use 2nd level model are in src/2nd_level.
  • Our final 2nd level model with 9.404 Private LB score is already committed in this repository (src/2nd_level/transformer.bin). To run inference using this model you can directly execute cd src/2nd_level && python infer.py.
Owner
Artsiom
https://asanakoy.github.io/
Artsiom
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Alex Pashevich 62 Dec 24, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022