A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Overview

Semantic Meshes

A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Build License: MIT

Paper

If you find this framework useful in your research, please consider citing: [arxiv]

@misc{fervers2021improving,
      title={Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes},
      author={Florian Fervers, Timo Breuer, Gregor Stachowiak, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens},
      year={2021},
      eprint={2111.11103},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Workflow

  1. Reconstruct a mesh of your scene from a set of images (e.g. using Colmap).
  2. Send all undistorted images through your segmentation model (e.g. from tfcv or image-segmentation-keras) to produce 2D semantic annotation images.
  3. Project all 2D annotations into the 3D mesh and fuse conflicting predictions.
  4. Render the annotated mesh from original camera poses to produce new 2D consistent annotation images, or save it as a colorized ply file.

Example output for a traffic scene with annotations produced by a model that was trained on Cityscapes:

view1 view2

Usage

We provide a python interface that enables easy integration with numpy and machine learning frameworks like Tensorflow. A full example script is provided in colorize_cityscapes_mesh.py that annotates a mesh using a segmentation model that was pretrained on Cityscapes. The model is downloaded automatically and the prediction peformed on-the-fly.

import semantic_meshes

...

# Load a mesh from ply file
mesh = semantic_meshes.data.Ply(args.input_ply)
# Instantiate a triangle renderer for the mesh
renderer = semantic_meshes.render.triangles(mesh)
# Load colmap workspace for camera poses
colmap_workspace = semantic_meshes.data.Colmap(args.colmap)
# Instantiate an aggregator for aggregating the 2D input annotations per 3D primitive
aggregator = semantic_meshes.fusion.MeshAggregator(primitives=renderer.getPrimitivesNum(), classes=19)

...

# Process all input images
for image_file in image_files:
    # Load image from file
    image = imageio.imread(image_file)
    ...
    # Predict class probability distributions for all pixels in the input image
    prediction = predictor(image)
    ...
    # Render the mesh from the pose of the given image
    # This returns an image that contains the index of the projected mesh primitive per pixel
    primitive_indices, _ = renderer.render(colmap_workspace.getCamera(image_file))
    ...
    # Aggregate the class probability distributions of all pixels per primitive
    aggregator.add(primitive_indices, prediction)

# After all images have been processed, the mesh contains a consistent semantic representation of the environment
aggregator.get() # Returns an array that contains the class probability distribution for each primitive

...

# Save colorized mesh to ply
mesh.save(args.output_ply, primitive_colors)

Docker

If you want to skip installation and jump right in, we provide a docker file that can be used without any further steps. Otherwise, see Installation.

  1. Install docker and gpu support
  2. Build the docker image: docker build -t semantic-meshes https://github.com/fferflo/semantic-meshes.git#master
    • If your system is using a proxy, add: --build-arg HTTP_PROXY=... --build-arg HTTPS_PROXY=...
  3. Open a command prompt in the docker image and mount a folder from your host system (HOST_PATH) that contains your colmap workspace into the docker image (DOCKER_PATH): docker run -v /HOST_PATH:/DOCKER_PATH --gpus all -it semantic-meshes bash
  4. Run the provided example script inside the docker image to annotate the mesh with Cityscapes annotations: colorize_cityscapes_mesh.py --colmap /DOCKER_PATH/colmap/dense/sparse --input_ply /DOCKER_PATH/colmap/dense/meshed-delaunay.ply --images /DOCKER_PATH/colmap/dense/images --output_ply /DOCKER_PATH/colorized_mesh.ply

Running the repository inside a docker image is significantly slower than running it in the host system (12sec/image vs 2sec/image on RTX 6000).

Installation

Dependencies

  • CUDA: https://developer.nvidia.com/cuda-downloads
  • OpenMP: On Ubuntu: sudo apt install libomp-dev
  • Python 3
  • Boost: Requires the python and numpy components of the Boost library, which have to be compiled for the python version that you are using. If you're lucky, your OS ships compatible Boost and Python3 versions. Otherwise, compile boost from source and make sure to include the --with-python=python3 switch.

Build

The repository contains CMake code that builds the project and provides a python package in the build folder that can be installed using pip.

CMake downloads, builds and installs all other dependencies automatically. If you don't want to clutter your global system directories, add -DCMAKE_INSTALL_PREFIX=... to install to a local directory.

The framework has to be compiled for specific number of classes (e.g. 19 for Cityscapes, or 2 for a binary segmentation). Add a semicolon-separated list with -DCLASSES_NUMS=2;19;... for all number of classes that you want to use. A longer list will significantly increase the compilation time.

An example build:

git clone https://github.com/fferflo/semantic-meshes
cd semantic-meshes
mkdir build
mkdir install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install -DCLASSES_NUMS=19 ..
make -j8
make install # Installs to the local install directory
pip install ./python

Build with incompatible Boost or Python versions

Alternatively, in case your OS versions of Boost or Python do not match the version requirements of semantic-meshes, we provide an installation script that also fetches and locally installs compatible versions of these dependencies: install.sh. Since the script builds python from source, make sure to first install all optional Python dependencies that you require (see e.g. https://github.com/python/cpython/blob/main/.github/workflows/posix-deps-apt.sh).

Owner
Florian
Florian
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023