Lightweight, Python library for fast and reproducible experimentation :microscope:

Overview

Steppy

license

What is Steppy?

  1. Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation.
  2. Steppy lets data scientist focus on data science, not on software development issues.
  3. Steppy's minimal interface does not impose constraints, however, enables clean machine learning pipeline design.

What problem steppy solves?

Problems

In the course of the project, data scientist faces two problems:

  1. Difficulties with reproducibility in data science / machine learning projects.
  2. Lack of the ability to prepare or extend experiments quickly.

Solution

Steppy address both problems by introducing two simple abstractions: Step and Tranformer. We consider it minimal interface for building machine learning pipelines.

  1. Step is a wrapper over the transformer and handles multiple aspects of the execution of the pipeline, such as saving intermediate results (if needed), checkpointing the model during training and much more.
  2. Tranformer in turn, is purely computational, data scientist-defined piece that takes an input data and produces some output data. Typical Transformers are neural network, machine learning algorithms and pre- or post-processing routines.

Start using steppy

Installation

Steppy requires python3.5 or above.

pip3 install steppy

(you probably want to install it in your virtualenv)

Resources

  1. 📒 Documentation
  2. 💻 Source
  3. 📛 Bugs reports
  4. 🚀 Feature requests
  5. 🌟 Tutorial notebooks (their repository):

Feature Requests

Please send us your ideas on how to improve steppy library! We are looking for your comments here: Feature requests.

Roadmap

At this point steppy is early-stage library heavily tested on multiple machine learning challenges (data-science-bowl, toxic-comment-classification-challenge, mapping-challenge) and educational projects (minerva-advanced-data-scientific-training).

We are developing steppy towards practical tool for data scientists who can run their experiments easily and change their pipelines with just few manipulations in the code.

Related projects

We are also building steppy-toolkit, a collection of high quality implementations of the top deep learning architectures -> all of them with the same, intuitive interface.

Contributing

You are welcome to contribute to the Steppy library. Please check CONTRIBUTING for more information.

Terms of use

Steppy is MIT-licensed.

Comments
  • Concat features

    Concat features

    How is it possible to do the following Step in new version(use of pandas_concat_inputs)?:

                                        transformer=GroupbyAggregationsFeatures(AGGREGATION_RECIPIES),
                                        input_steps=[df_step],
                                        input_data=['input'],
                                        adapter=Adapter({
                                            'X': ([('input', 'X'),
                                                   (df_step.name, 'X')],
                                                  pandas_concat_inputs)
                                        }),
                                        cache_dirpath=config.env.cache_dirpath)
    opened by denyslazarenko 8
  • Docs3

    Docs3

    Pull Request template

    Doc contributions

    Contributing.html FAQ.html intro.html testdoc.html

    tested by running in docs/

    >>> (Steppy) sphinx-apidoc -o generated/ -d 4 -fMa ../steppy
     >>> (Steppy) clear;make clean;make html
    

    Regards Bruce

    core contributors to the minerva.ml

    opened by bcottman 6
  • How to evaluate each step only once?

    How to evaluate each step only once?

    I have the following structure of my steps. The problem is that many steps are called more than once and it makes the process of training very slow. Is it possible somehow to simplify it? more precisely, how to optimize this part? I would like to compute input_missing just once selection_105

    opened by denyslazarenko 4
  • Difference between cache and persist

    Difference between cache and persist

    I do not really get the difference between these two things. Both of them cache the result of execution in the disc. selection_114 Is it a good idea to add cache_output to all the Steps to avoid any executions twice? In some of your examples, you use both cache and persist at the same time, I think it is a good idea to use one of it... selection_115

    opened by denyslazarenko 2
  • ENH: Adds id to support output caching

    ENH: Adds id to support output caching

    Fixes https://github.com/neptune-ml/steppy/issues/39

    This PR adds an optional id field to data dictionary. When cache_output is set to True, theid field is appended to step.nameto distinguish between output caches produced by different data dictionaries.

    For example:

    data_train = {
        'id': 'data_train'
        'input': {
            'features': np.array([
                [1, 6],
                [2, 5],
                [3, 4]
            ]),
            'labels': np.array([2, 5, 3]),
        }
    }
    step = Step(
        name='test_cache_output_with_key',
        transformer=IdentityOperation(),
        input_data=['input'],
        experiment_directory='/exp_dir',
        cache_output=True
    )
    step.fit_transform(data_train)
    

    This will produce a output cache file at /exp_dir/cache/test_cache_output_with_key__data_train.

    opened by thomasjpfan 2
  • Simplified adapter syntax

    Simplified adapter syntax

    This is my idea for simplifying adapter syntax. The benefit is that importing the extractor E from the adapter module is no longer needed. On the other hand, the rules for deciding if something is an atomic recipe or part of a larger recipe or even a constant get more complicated.

    feature-request API-design 
    opened by mromaniukcdl 2
  • refactor adapter.py

    refactor adapter.py

    Problem: Currently User must from steppy.adapter import Adapter, E in order to use adapters.

    Refactor so that:

    • Use does not have to import E
    • add Example to docstrings

    Refactor is comprehensive, so that:

    • correct the code
    • correct tests
    • correct docstrings
    feature-request API-design 
    opened by kamil-kaczmarek 2
  • PyTorch model is never saved as checkpoint after first epoch

    PyTorch model is never saved as checkpoint after first epoch

    Look here: https://github.com/minerva-ml/gradus/blob/dev/steps/pytorch/callbacks.py#L266 If self.epoch_id is equal to 0, then loss_sum is equal to self.best_score and model is not saved. I think it should be fixed, because sometimes we want to have model after first epoch saved.

    bug feature-request 
    opened by apyskir 2
  • Unintuitive adapter syntax

    Unintuitive adapter syntax

    Current syntax for adapters has some peculiarities. Consider the following example.

            step = Step(
                name='ensembler',
                transformer=Dummy(),
                input_data=['input_1'],
                adapter={'X': [('input_1', 'features')]},
                cache_dirpath='.cache'
            )
    

    This step basically extracts one element of the input. It seems redundant to write brackets and parentheses. Doing adapter={'X': ('input_1', 'features')}, should be sufficient.

    Moreover, to my suprise adapter={'X': [('input_1', 'features'), ('input_2', 'extra_features')]}, is incorrect, and currently leads to ValueError: too many values to unpack (expected 2)

    My suggestions to make the syntax consistent are:

    1. adapter={'X': ('input_1', 'features')} should map X to extracted features.
    2. adapter={'X': [...]} should map X to a list of extracted objects (specified by elements of the list). In particular adapter={'X': [('input_1', 'features')]} should map X to a one-element list with extracted features.
    3. adapter={'X': ([...], func)} should extract appropriate objects and put them on the list, then func should be called on that list, and X should map to the result of that call.
    API-design 
    opened by grzes314 2
  • 2nd version docs for steppy

    2nd version docs for steppy

    Pull Request template

    Doc contributions

    This represents 0.01, where we/you were at 0.0? As you should be able to see I was able to use 95% of what was there previously. redid index.rst redid conf.py added directory docs.nbdocs

    needs more work . about days worth. before pushing out to read the docs.

    i found the docstrings very strong.

    i not very strongly suggest step-toolkit and steppy-examples be merged into one project.

    I see you use goggle-docstring-style. i will switch from numpy-style.

    Regards Bruce

    opened by bcottman 1
  • FAQ DOC

    FAQ DOC

    Started. intend on first pass to fill with my (naive/embarassing) discoveries and really good (i.e. incredibly stupid) questions and enlightening answers from gaggle.

    opened by bcottman 1
  • Let's make it possible to transform based on checkpoints

    Let's make it possible to transform based on checkpoints

    Hi! Let's assume I'm training a huge network for a lot of epochs and it saves checkpoints in checkpoints folder. I suggest to prepare a possibility to run transform on a pipeline, when transformer is not in experiment_dir/transformers, but a checkpoint is available in checkpoints folder. What do you think?

    opened by apyskir 0
  • Structure of steps - ideas for making it cleaner

    Structure of steps - ideas for making it cleaner

    @kamil-kaczmarek, @jakubczakon I know it is a bunch of different ideas and suggestions clustered in one issue. Let me know which of those are compatible with the current roadmap. (I am happy to contribute/collaborate on some.)

    • default data folder (e.g. ./.steppy/step_name/) or to be configurable if needed; overriding only when strictly necessary
    • no input_data; it complicates things for no obvious reason!
    • names optional, automatically generated from class names + number
    • more explicit job structure (steps = Sequence([step1, step2])); vide Keras API
    • adapters as inheriting from BaseTrainers,step = Rename({'a': 'aaa', 'b': 'bbb'}), vide rename in Pandas
    • how to separate persist-data vs persist-parameters? (e.g. for image preprocessing, it may be time-saving to save once processed images)
    • built-in data tests (e.g. len(X) == len(Y)), in def test
    • built-in test if persist->load is correct (i.e. loaded data is the same as saved)
    opened by stared 2
  • Do all Steps execute parallel?

    Do all Steps execute parallel?

    Is it necessary to divide executions inside my class to be separate Thread or just divide them between Steps? For example, I can to fit KNN, PCA in one class method and parallel them or create two separate classes for them...

    opened by denyslazarenko 2
  • Maybe load_saved_input?

    Maybe load_saved_input?

    Hi, I have a proposal: let's make it possible to dump adapted input of a step to disk. It's very handy when you are working on a 5th or 10th step in a pipeline that has 2,3 or more input steps. Now you have to set flag load_saved_output=True on each of the input steps to be able to work on your beloved step. If you could just set load_saved_input=True (adapted or not adapted, I think it's worth discussion) on the step you are currently working on, it would be much easier. What do you think?

    opened by apyskir 0
Releases(v0.1.16)
Owner
minerva.ml
minerva.ml
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022