Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Overview

Frequency Bias of Generative Models

Generator Testbed Discriminator Testbed

This repository contains official code for the paper On the Frequency Bias of Generative Models.

You can find detailed usage instructions for analyzing standard GAN-architectures and your own models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2021NEURIPS,
  title = {On the Frequency Bias of Generative Models},
  author = {Schwarz, Katja and Liao, Yiyi and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Installation

Please note, that this repo requires one GPU for running. First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called fbias using

conda env create -f environment.yml
conda activate fbias

Generator Testbed

You can run a demo of our generator testbed via:

chmod +x ./scripts/demo_generator_testbed.sh
./scripts/demo_generator_testbed.sh

This will train the Generator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/generator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a generator architecture you can train a model by running

python generator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/generator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_generator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/generator_testbed/*EXPERIMENT_NAME*/eval.

Discriminator Testbed

You can run a demo of our discriminator testbed via:

chmod +x ./scripts/demo_discriminator_testbed.sh
./scripts/demo_discriminator_testbed.sh

This will train the Discriminator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/discriminator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a discriminator architecture you can train a model by running

python discriminator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/discriminator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_discriminator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/discriminator_testbed/*EXPERIMENT_NAME*/eval.

Datasets

Toyset

You can generate a toy dataset with Gaussian peaks as spectrum by running

cd data
python toyset.py 64 100
cd ..

This creates a folder data/toyset/ and generates 100 images of resolution 64x64 pixels.

CelebA-HQ

Download celebA_hq. Then, update data:root: *PATH/TO/CELEBA_HQ* in the config file.

Other datasets

The config setting data:root: *PATH/TO/DATA* needs to point to a folder with the training images. You can use any dataset which follows the folder structure

*PATH/TO/DATA*/xxx.png
*PATH/TO/DATA*/xxy.png
...

By default, the images are center-cropped and optionally resized to the resolution specified in the config file underdata:resolution. Note, that you can also use a subset of images via data:subset.

Architectures

StyleGAN Support

In addition to Progressive Growing GAN, this repository supports analyzing the following architectures

For this, you need to initialize the stylegan3 submodule by running

git pull --recurse-submodules
cd models/stylegan3/stylegan3
git submodule init
git submodule update
cd ../../../

Next, you need to install any additional requirements for this repo. You can do this by running

conda activate fbias
conda env update --file environment_sg3.yml --prune

You can now analyze the spectral properties of the StyleGAN architectures by running

# StyleGAN2
python generator_testbed.py baboon64/StyleGAN2 configs/generator_testbed/sg2.yaml
python discriminator_testbed.py baboon64/StyleGAN2 configs/discriminator_testbed/sg2.yaml
# StyleGAN3
python generator_testbed.py baboon64/StyleGAN3 configs/generator_testbed/sg3.yaml

Other architectures

To analyze any other network architectures, you can add the respective model file (or submodule) under models. You then need to write a wrapper class to integrate the architecture seamlessly into this code base. Examples for wrapper classes are given in

  • models/stylegan2_generator.py for the Generator
  • models/stylegan2_discriminator.py for the Discriminator

Further Information

This repository builds on Lars Mescheder's awesome framework for GAN training. Further, we utilize code from the Stylegan3-repo and GenForce.

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022