RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Overview

RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Website: https://robust.art

Paper: https://openreview.net/forum?id=wu1qmnC32fB

Document: https://robust.art/api

Leaderboard: http://robust.art/results

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial noises, which motivates the benchmark of model robustness. Existing benchmarks mainly focus on evaluating the defenses, but there are no comprehensive studies on how architecture design and general training techniques affect robustness. Comprehensively benchmarking their relationships will be highly beneficial for better understanding and developing robust DNNs. Therefore, we propose RobustART, the first comprehensive Robustness investigation benchmark on ImageNet (including open-source toolkit, pre-trained model zoo, datasets, and analyses) regarding ARchitecture design (44 human-designed off-the-shelf architectures and 1200+ networks from neural architecture search) and Training techniques (10+ general techniques, e.g., data augmentation) towards diverse noises (adversarial, natural, and system noises). Extensive experiments revealed and substantiated several insights for the first time, for example: (1) adversarial training largely improves the clean accuracy and all types of robustness for Transformers and MLP-Mixers; (2) with comparable sizes, CNNs > Transformers > MLP-Mixers on robustness against natural and system noises; Transformers > MLP-Mixers > CNNs on adversarial robustness; for some light-weight architectures (e.g., EfficientNet, MobileNetV2, and Mo- bileNetV3), increasing model sizes or using extra training data reduces robustness. Our benchmark http://robust.art/: (1) presents an open-source platform for conducting comprehensive evaluation on different robustness types; (2) provides a variety of pre-trained models that can be utilized for downstream applications; (3) proposes a new perspective to better understand the mechanism of DNNs towards designing robust architectures, backed up by comprehensive analysis. We will continuously contribute to build this open eco-system for the community.

Installation

You use conda to create a virtual environment to run this project.

git clone --recurse-submodules https://github.com/DIG-Beihang/RobustART.git
cd robustART
conda create --name RobustART python=3.6.9
conda activate RobustART
pip install -r requirements.txt

After this, you should installl pytorch and torchvision package which meet your GPU and CUDA version according to https://pytorch.org

Quick Start

Common Setting

If you want to use this project to train or evaluate model(s), you can choose to create a work directory for saving config, checkpoints, scripts etc.

We have put some example for trainging or evlaluate. You can use it as follows

cd exprs/exp/imagenet-a_o-loop
bash run.sh

Add Noise

You can use the AddNoise's add_noise function to add multiple noise for one image or a batch of images The supported noise list is: ['imagenet-s', 'imagenet-c', 'pgd_linf', 'pgd_l2', 'fgsm', 'autoattack_linf', 'mim_linf', 'pgd_l1']

Example of adding ImageNet-C noise for image

from RobustART.noise import AddNoise
NoiseClass = AddNoise(noise_type='imagenet-c')
# set the config of one kind of noise
NoiseClass.set_config(corruption_name='gaussian_noise')
image_addnoise = NoiseClass.add_noise(image='test_input.jpeg')

Training Pipeline

We provided cls_solver solver to train a model with a specific config

Example of using base config to train a resnet50

cd exprs/robust_baseline_exp/resnet/resnet50
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Evaluation Pipeline

We evaluate model(s) of different dataset, we provides several solver to evaluate the model on one or some specific dataset(s)

Example of evaluation on ImageNet-A and ImageNet-O dataset

cd exprs/exp/imagenet-a_0-loop
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Metrics

We provided metrics APIs, so that you can use these APIs to evaluate results for ImageNet-A,O,P,C,S and Adv noise.

from RobustART.metrics import ImageNetAEvaluator
metric = ImageNetAEvaluator()
metric.eval(res_file)

Citation

@article{tang2021robustart,
title={RobustART: Benchmarking Robustness on Architecture Design and Training Techniques},
author={Shiyu Tang and Ruihao Gong and Yan Wang and Aishan Liu and Jiakai Wang and Xinyun Chen and Fengwei Yu and Xianglong Liu and Dawn Song and Alan Yuille and Philip H.S. Torr and Dacheng Tao},
journal={https://openreview.net/forum?id=wu1qmnC32fB},
year={2021}}
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022