[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Related tags

Deep LearningDRML
Overview

Deep Relational Metric Learning

This repository is the official PyTorch implementation of Deep Relational Metric Learning.

Framework

AEL

DRML

Datasets

CUB-200-2011

Download from here.

Organize the dataset as follows:

- cub200
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class100
        |   |- image100_1
        |   |- ...
        |- ...

Cars196

Download from here.

Organize the dataset as follows:

- cars196
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class98
        |   |- image98_1
        |   |- ...
        |- ...

Requirements

To install requirements:

pip install -r requirements.txt

Training

Baseline models

To train the baseline model with the ProxyAnchor loss on CUB200, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the baseline model with the ProxyAnchor loss on Cars196, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

DRML models

To train the proposed DRML model using the ProxyAnchor loss on CUB200 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the proposed DRML model using the ProxyAnchor loss on Cars196 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

Device

We tested our code on a linux machine with an Nvidia RTX 3090 GPU card. We recommend using a GPU card with a memory > 8GB (BN-Inception + batch-size of 120 ).

Results

The baseline models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-baseline 67.3 77.7 85.7 91.4 68.7
cars196-ProxyAnchor-baseline 84.4 90.7 94.3 96.8 69.7

Our models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-ours 68.7 78.6 86.3 91.6 69.3
cars196-ProxyAnchor-ours 86.9 92.1 95.2 97.4 72.1

COMING SOON

  • We will upload the code for cross-validation setting soon.
  • We will update the optimal hyper-parameters of the experiments soon.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
190 Jan 03, 2023
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023