Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

Overview

marge

This repository releases the code for Generating Query Focused Summaries from Query-Free Resources.

Please cite the following paper [bib] if you use this code,

Xu, Yumo, and Mirella Lapata. "Generating Query Focused Summaries from Query-Free Resources." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6096–6109. 2021.

The availability of large-scale datasets has driven the development of neural models that create generic summaries from single or multiple documents. In this work we consider query focused summarization (QFS), a task for which training data in the form of queries, documents, and summaries is not readily available. We propose to decompose QFS into (1) query modeling (i.e., finding supportive evidence within a set of documents for a query) and (2) conditional language modeling (i.e., summary generation). We introduce MaRGE, a Masked ROUGE Regression framework for evidence estimation and ranking which relies on a unified representation for summaries and queries, so that summaries in generic data can be converted into proxy queries for learning a query model. Experiments across QFS benchmarks and query types show that our model achieves state-of-the-art performance despite learning from weak supervision.

Should you have any query please contact me at [email protected].

Preliminary setup

Project structure

marge
└───requirements.txt
└───README.md
└───log        # logging files
└───run        # scripts for MaRGE training
└───src        # source files
└───data       # generic data for training; qfs data for test/dev
└───graph      # graph components for query expansion
└───model      # MaRGE models for inference
└───rank       # ranking results
└───text       # summarization results
└───unilm_in   # input files to UniLM
└───unilm_out  # output files from UniLM

After cloning this project, use the following command to initialize the structure:

mkdir log data graph model rank text unilm_in unilm_out

Creating environment

cd ..
virtualenv -p python3.6 marge
cd marge
. bin/activate
pip install -r requirements.txt

You need to install apex:

cd ..
git clone https://www.github.com/nvidia/apex
cd apex
python3 setup.py install

Also, you need to setup ROUGE evaluation if you have not yet done it. Please refer to this repository. After finishing the setup, specify the ROUGE path in frame/utils/config_loader.py as an attribute of PathParser:

self.rouge_dir = '~/ROUGE-1.5.5/data'  # specify your ROUGE dir

Preparing benchmark data

Since we are not allowed to distribute DUC clusters and summaries, you can request DUC 2005-2007 from NIST. After acquiring the data, gather each year's clusters and summaries under data/duc_cluster and data/duc_summary, respectively. For instance, DUC 2006's clusters and summaries should be found under data/duc_cluster/2006/ and data/duc_summary/2006/, respectively. For DUC queries: you don't have to prepare queries by yourself; we have put 3 json files for DUC 2005-2007 under data/masked_query, which contain a raw query and a masked query for each cluster. Queries will be fetched from these files at test time.

TD-QFS data can be downloaded from here. You can also use the processed version here.

After data preparation, you should have the following directory structure with the right files under each folder:

marge
└───data
│   └───duc_clusters   # DUC clusters 
│   └───duc_summaries  # DUC reference summaries 
│   └───masked_query   # DUC queries (raw and masked)
│   └───tdqfs          # TD-QFS clusters, queries and reference summaries

MaRGE: query modeling

Preparing training data

Source files for building training data are under src/sripts. For each dataset (Multi-News or CNN/DM), there are three steps create MaRGE training data.

A training sample for Marge can be represented as {sentence, masked summary}->ROUGE(sentence, summary). So we need to get the ROUGE scores for all sentences (step 1) and creating masked summaries (step 2). Then we put them together (step 3).

  1. Calculate ROUGE scores for all sentences:
python src/sripts/dump_sentence_rouge_mp.py
  1. Build masked summaries:
python src/sripts/mask_summary_with_ratio.py
  1. Build train/val/test datasets:
python src/sripts/build_marge_dataset_mn.py

In our experiments, Marge trained on data from Multi-News yielded the best performance in query modeling. If you want to build training data from CNN/DM:

  1. Use the function gathered_mp_dump_sentence_cnndm() in the first step (otherwise, use the function gathered_mp_dump_sentence_mn() )
  2. Set dataset='cnndm' in the second step (otherwise, dataset='mn')
  3. Use build_marge_dataset_cnndm.py instead for the last step

Model training

Depending on which training data you have built, you can run either one of the following two scripts:

. ./run/run_rr_cnndm.sh   # train MaRGE with data from CNN/DM
. ./run/run_rr_mn.sh  # train MaRGE with data from Multi-News

Configs specified in these two files are used in our experiments, but feel free to change them for further experimentation.

Inference and evaluation

Use src/frame/rr/main.py for DUC evaluation and src/frame/rr/main_tdqfs.py for TD-QFS evalaution. We will take DUC evaluation for example.

In src/frame/rr/main.py, run the following methods in order (or at once):

init()
dump_rel_scores()  # inference with MaRGE
rel_scores2rank()  # turn sentence scores to sentence rank
rr_rank2records()  # take top sentences

To evaluate evidence rank, in src/frame/rr/main.py, run:

select_e2e()

MaRGESum: summary generation

Prepare training data from Multi-News

To train a controllable generator, we make the following three changes to the input from Multi-News (and CNN/DM):

  1. Re-order input sentences according to their ROUGE scores, so the top ones will be biased over:
python scripts/selector_for_train.py
  1. Prepend a summary-length token
  2. Prepend a masked summary (UMR-S)

Prepare training data from CNN/DM

Our best generation result is obtained with CNN/DM data. To train MargeSum on CNN/DM data, apart from the above-mentioned three customizations, we need an extra step: build a multi-document version of CNN/DM.

This is mainly because the summaries in the original CNN/DM are fairly short, while testing on QFS requires 250 words as output. To fix this issue, we concatenate summaries from a couple of relevant samples to get a long enough summary. Therefore, the input is now a cluster of the documents from these relevant samples.

This involves in Dr.QA to index all summaries in CNN/DM. After indexing, you can use the following script to cluster samples via retrieving similar summaries:

python scripts/build_cnndm_clusters.py
  • upload the training data, so you can use this multi-document CNN/DM without making it from scratch.

Inference and evaluation

Setting up UniLM environment

To evaluate abstractive summarization, you need to setup an UniLM evironment following the instructions here.

After setting up UnILM, in src/frame/rr/main.py, run:

build_unilm_input(src='rank')

This turns ranked evidence from Marge into MargeSum input files.

Now You can evaluate the trained UniLM model for developement and testing. Go to the UniLM project root, set the correct input directory, and deocode the summaries.

  • add detailed documentation for setting up UniLM.
  • add detailed documentation for decoding.

To evaluate the output, use the following function in src/frame/rr/main.py:

eval_unilm_out()

You can specifiy inference configs in src/frame/rr/rr_config.py.

Owner
Yumo Xu
PhD student @EdinburghNLP.
Yumo Xu
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022