李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

Overview

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长!

打滚卖萌求star求fork!

0.效果展示

1.模型简介

1.1AnimeGANv2

本文使用了animeGANv2进行了视频的风格迁移。
animeGANv2,顾名思义,是其前作AnimeGAN的改进版,改进方向主要在以下4点:

  • 解决了生成的图像中的高频伪影问题。
  • 它易于训练,并能直接达到论文所述的效果。
  • 进一步减少生成器网络的参数数量。(现在生成器大小 8.17Mb)
  • 尽可能多地使用来自BD电影的新的高质量的风格数据。
    效果图参考:
    animeGANv2
    本文则是使用了paddlepaddle预训练好的animeGANv2模型对李云龙名场面视频进行了风格化迁移,详情请看下文分解。

2.实现思路

flow

3.素材准备

首先要找到自己要操作的视频素材,将视频的音频单独提取出来备用
我自己找的资源放在了codes/videos/liyunlong文件夹下,是李云龙名场面:
你咋不敢跟旅长干一架呢!→旅长我给你跪下了 名场面

4.代码实操:

话不多说,首先是环境的基本配置

  • 安装基本环境
!pip install -r codes/PaddleGAN-develop/requirements.txt
  • 导入基本环境
import paddle 
import os 
import sys 
sys.path.insert(0,'codes/PaddleGAN-develop')
from ppgan.apps import AnimeGANPredictor

5.GAN它!

友情提示:此处最好使用GPU环境,cpu推理属实是有点点慢
进行模型的推理:

使用paddlepaddle预训练好的animeGANv2模型对视频进行风格迁移:
from ppgan.apps import AnimeGANPredictor
import cv2

predictor = AnimeGANPredictor('',None,)
video_src = 'codes/videos/liyunlong/格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4'
video_ = cv2.VideoCapture(video_src)
video_name_ = os.path.basename(video_src)
total_frames = video_.get(cv2.CAP_PROP_FRAME_COUNT)
fps_ = video_.get(cv2.CAP_PROP_FPS)
print("video {}, fps:{}, total frames:{}...".format(video_name_, fps_, total_frames))
frame_count_ = 0
save_per_frames = 1
dst_dir = 'codes/videos/liyunlong/'
out_video = cv2.VideoWriter('{}/hayao_{}'.format(dst_dir, video_name_),
                                cv2.VideoWriter_fourcc(*'DIVX'), int(fps_),
                                (int(video_.get(3)), int(video_.get(4))))
print('now begin...')
while True:
    ret_, frame_ = video_.read()
    if not ret_:  # or len(fps_list_) == 0:
        print('end of video...')
        break
    result_frame = predictor.anime_image_only(frame_)
    if frame_count_ % save_per_frames == 0:
        out_video.write(result_frame)
    frame_count_ = frame_count_ + 1
    if frame_count_ % 100 == 0:
        print("{}/{} processed...".format(frame_count_, int(total_frames)), flush=False)

6.最终视频

合成最终所需要的视频:

# 合并生成的视频和之前分离的音频:
!ffmpeg -i codes/videos/liyunlong/hayao_格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4 -i codes/videos/liyunlong/音频1.aac -c:v copy -c:a aac -strict experimental codes/videos/liyunlong/李云龙二次元化.mp4

这样就大功告成啦~~~
你可以在此基础上:

  • 更换你喜欢的视频
  • 更换其他paddle预训练好的模型
  • 甚至可以尝试自己动手训练定制化的模型!

打滚卖萌求star、fork!

PaddleGAN 的基础上做了些微小的改动,鸣谢.

Owner
oukohou
Hello there.
oukohou
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022