Style-based Neural Drum Synthesis with GAN inversion

Overview

Style-based Drum Synthesis with GAN Inversion Demo

TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the paper Adversarial Synthesis of Drum Sounds @ The 2020 DAFx Conference.

neural drum synthesis

Code

Dependencies

Python

Code has been developed with Python 3.6.13. It should work with other versions of Python 3, but has not been tested. Moreover, we rely on several third-party libraries, listed in requirements.txt. They can be installed with

$ pip install -r requirements.txt

Checkpoints

The tensorflow checkpoints for loading pre-trained network weights can be download here. Unzip the folder and save it into this projects directory: "style-drumsynth/checkpoints".

Usage

The code is contained within the ads_demo.py script, which enables conditional synthesises of drum sounds using a pretrained generator.

The following control parameters are available:

  • Condition: which type of drum to generation (kick, snare or hat)
  • Direction: "features", which principal direction to move in
  • Direction slider: How far to move in a particular direction
  • Number of generations: How many drums to generate
  • Stocastic Variation: Amount of inconsequential noise to inject into the generator
  • Randomize: Generate by randomly sampling the latent space, or generate from a fixed, pre-computed latent vectors for a kick, snare and hat
  • Encode: regenerate drum sounds stored in the ads_demo/input_audio

Generations are saved in the ads_demo/generations folder. Pretrained model weights are saved in the ads_demo/checkpoints folder.

train.py arguments

  -c CONDITION,           --condition CONDITION
                            0: kick, 1: snare, 2:hat
  -d DIRECTION,           --direction DIRECTION
                            synthesis controls [0:4]
  -ds DIRECTION_SLIDER,   --direction_slider DIRECTION_SLIDER
                            how much to move in a particular direction
  -n NUM_GENERATIONS,     --num_generations NUM_GENERATIONS
                            number of examples to generate
  -v STOCASTIC_VARIATION, --stocastic_variation STOCASTIC_VARIATION
                            amount of inconsequential noise injected
  -r RANDOMIZE,           --randomize RANDOMIZE
                            if set to False, a fixed latent vector is used to generate a drum sound from each condition
  -e ENCODE,              --encode ENCODE
                            regenerates drum sounds from encoder folder

Supporting webpage

For more information, please visit the corresponding supporting website.

It contains the following:

  • Audio examples
  • Training data
  • Generations
  • Example usage within loop-based electronic music compositions
  • Generating Drum Loops
  • Interpolation demonstration
  • Supplementary figures
  • A link to the DAFx 2020 paper and presentation

References

[1] Drysdale, J., M. Tomczak, J. Hockman, Adversarial Synthesis of Drum Sounds. Proceedings of the 23rd International Conference on Digital Audio Effects (DAFX), 2020.
@inproceedings{drysdale2020ads,
  title={Adversarial synthesis of drum sounds},
  author={Drysdale, Jake and Tomczak, Maciek and Hockman, Jason},
  booktitle = {Proceedings of the International Conference on Digital Audio Effects (DAFx)},
  year={2020}
}

Help

Any questions please feel free to contact me on [email protected]

Owner
Sound and Music Analysis (SoMA) Group
The Sound and Music Analysis (SoMA) Group in the Digital Media Technology Laboratory at Birmingham City University.
Sound and Music Analysis (SoMA) Group
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022