Face detection using deep learning.

Overview

Face Detection Docker Solution Using Faster R-CNN



Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe through an easy to use docker image. Bring your videos and images, run dockerface and obtain videos and images with bounding boxes of face detections and an easy to use face detection annotation text file.

The docker image is large for now because OpenCV has to be compiled and stored in the image to be able to use video and it takes up a lot of space.

Technical details and some experiments are described in the Arxiv Tech Report.

Citing Dockerface

If you find Dockerface useful in your research please consider citing:

@ARTICLE{2017arXiv170804370R,
   author = {{Ruiz}, N. and {Rehg}, J.~M.},
    title = "{Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1708.04370},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2017,
    month = aug,
   adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170804370R},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Instructions

Install NVIDIA CUDA (8 - preferably) and cuDNN (v5 - preferably)

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

Install docker

https://docs.docker.com/engine/installation/

Install nvidia-docker

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb

Go to your working folder and create a directory called data, your videos and images should go here. Also create a folder called output.

cd $WORKING_DIR
mkdir data
mkdir output

Run the docker container

sudo nvidia-docker run -it -v $PWD/data:/opt/py-faster-rcnn/edata -v $PWD/output/video:/opt/py-faster-rcnn/output/video -v $PWD/output/images:/opt/py-faster-rcnn/output/images natanielruiz/dockerface:latest

Now we have to recompile Caffe for it to work on your own machine.

cd caffe-fast-rcnn
rm -rf build
mkdir build
cd build
cmake -DUSE_CUDNN=1 ..
make -j20 && make pycaffe
cd ../..

Finally use this command to process a video

python tools/run_face_detection_on_video.py --gpu 0 --video edata/YOUR_VIDEO_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Use this command to process an image

python tools/run_face_detection_on_image.py --gpu 0 --image edata/YOUR_IMAGE_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Also if you are looking to conveniently process all images in one folder use this command

python tools/facedetection_images.py --gpu 0 --image_folder edata/IMAGE_FOLDER_NAME --output_folder OUTPUT_FOLDER_PATH --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

The default confidence threshold is 0.85 which works for high quality videos or images where the faces are clearly visible. You can play around with this value.

The columns contained in the output text files are:

For videos:

frame_number x_min y_min x_max y_max confidence_score

For images:

image_path x_min y_min x_max y_max confidence_score

Where (x_min,y_min) denote the coordinates of the upper-left corner of the bounding box in image intrinsic coordinates and (x_max, y_max) denote the coordinates of the lower-right corner of the bounding box in image intrinsic coordinates. (ref. https://www.mathworks.com/help/images/image-coordinate-systems.html) confidence_score denotes the probability output of the model that the detection is correct (it is a number included in [0,1])

Voila, that easy!

After you're done with the docker container you can exit.

exit

You want to restart and re-attach to this same docker container so as to avoid compiling Caffe again. To do this first get the id for that container.

sudo docker ps -a

It should be the last one that was launched. Take note of CONTAINER ID. Then start and attach to that container.

sudo docker start CONTAINER_ID
sudo docker attach CONTAINER_ID

You can now continue processing videos.

Nataniel Ruiz and James M. Rehg
Georgia Institute of Technology

Credits: Original dockerface logo made by Freepik from Flaticon is licensed by Creative Commons BY 3.0, modified by Nataniel Ruiz.

Owner
Nataniel Ruiz
PhD candidate at Boston University doing Computer Vision and ML. M.S. from Georgia Tech, BA/M.S. from Ecole Polytechnique
Nataniel Ruiz
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardรณn Rubio 5 Apr 20, 2022
Security evaluation module with onnx, pytorch, and SecML.

๐Ÿš€ ๐Ÿผ ๐Ÿ”ฅ PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. ๋†’์€ ๊ธฐ์–ด๋น„์™€ ๋‚ฎ์€ ๊ธฐ์–ด๋น„์˜ TDD 5.2 ๋„๋ฉ”์ธ ๊ณ„์ธต ํ…Œ์ŠคํŠธ๋ฅผ ์„œ๋น„์Šค ๊ณ„์ธต์œผ๋กœ ์˜ฎ๊ฒจ์•ผ ํ•˜๋Š”๊ฐ€? ๋„๋ฉ”์ธ ๊ณ„์ธต ํ…Œ์ŠคํŠธ def

minsung sim 2 Mar 04, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022