Simulating Sycamore quantum circuits classically using tensor network algorithm.

Overview

Simulating the Sycamore quantum supremacy circuit

This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with $n=53$ qubits, $m=20$ cycles using the tensor network method proposed in arXiv:2103.03074.

We plan to release the code soon.

Explanation of data

  1. data/circuit_n53_m20_s0_e0_pABCDCDAB.py is the circuit file which has been download from the Google's data repository for the Sycamore circuits.
  2. data/bipartition_n53_m20_s0_ABCD_s24_simplify_.txt is the initial bipartition of the simplified tensor network corresponding to Sycamore circuit with 53 qubits, 20 cycles, seed 0, elide 0 and ABCDCDAB sequence. There are two lines in the file, the first line indicates the tail partition which includes 21 open qubits, while the second line includes the head partition with 32 closed qubits. The simplification of the tensor network is done by sequentially contracting tensors with 2 or less dimensions.
  3. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_edges.txt contains the 23 slicing edges which splits the overall contraction task into $2^{23}$ subtasks, each of which has space complexity $2^{30}$ hence can be contracted using fit into 32G memory.
  4. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_ordernew.txt includes the contraction order. For each edge in the contraction order, say $i, j$, the $i$th and $j$th tensor in the head partition will be contracted by tracing out the shared indices. Then the resulting tensor will be put back into the $i$th position.
  5. vector.pt contains the cut tensor of of the head partition whose overall dimension is $2^{23}$ and the annotations of corresponding dimensions. The file is saved using pytorch, one can use torch.load to load the data.
  6. The obtained $2^{21}$ samples for the Sycamore circuits with $n=53$ qubits and $m=20$ cycles and their probabilities and amplitudes are listed in probs.txt file. Notice that the configuration we assigned to all closed qubits are fixed to $\underbrace{0,0,0,\cdots,0}_{32}$, and the open qubit ids are 11, 12, 13, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 44, 45, 46.

Notice

We noticed that in our paper arXiv:2103.03074 we have a misprint in the first row of Tab.III, where the amplitude should be |amplitude|. Neverthless, we put the refined table below.

image-20210308101302534

The $2^{21}$ bitstrings with amplitudes and probabilities can be download here.

Owner
Feng Pan
PHD candidate on theoretical physics. Personal interest in learning theory by statistical physics approaches.
Feng Pan
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023