We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Overview

Auto-exposure fusion for single-image shadow removal

We propose a new method for effective shadow removal by regarding it as an exposure fusion problem. Please refer to the paper for details: https://openaccess.thecvf.com/content/CVPR2021/papers/Fu_Auto-Exposure_Fusion_for_Single-Image_Shadow_Removal_CVPR_2021_paper.pdf.

Framework

Dataset

  1. For data folder path (ISTD), train_A: shadow images, train_B: shadow masks, train_C: shadow free images, organize them as following:
--ISTD+
   --train
      --train_A
          --1-1.png
      --train_B
          --1-1.png 
      --train_C_fixed_official 
          --1-1.png
      --train_params_fixed  # generate later
          --1-1.png.txt
   --test
      --test_A
          --1-1.png
      --test_B
          --1-1.png
      --test_C
          --1-1.png
      --mask_threshold   # generate later
          --1-1.png
  1. Run the code ./data_processing/compute_params.ipynb for exposure parameters generation. The result will be put in ./ISTD/train/train_params_fixed. Here, names train_C_fixed_official and train_params_fixed are for ISTD+ dataset, which are consitent with self.dir_C and self.dir_param in ./data/expo_param_dataset.py .
  2. For testing masks, please run the code ./data_processing/test_mask_generation.py. The result will be put in ./ISTD/mask_threshold.

Pretrained models

We release our pretrained model (ISTD+, SRD) at models

pretrained model (ISTD) at models

Modify the parameter model in file OE_eval.sh to Refine and set ks=3, n=5, rks=3 to load the model.

Train

Modify the corresponding path in file OE_train.sh and run the following script

sh OE_train.sh
  1. For the parameters:
      DATA_PATH=./Datasets/ISTD or your datapath
      n=5, ks=3 for FusionNet,
      n=5, ks=3, rks=3 for RefineNet.
      model=Fusion for FusionNet training,
      model=Refine for RefineNet training.

The trained models are saved in ${REPO_PATH}/log/${Name}, Name are customized for parameters setting.

Test

In order to test the performance of a trained model, you need to make sure that the hyper parameters in file OE_eval.sh match the ones in OE_train.sh and run the following script:

sh OE_eval.sh
  1. The pretrained models are located in ${REPO_PATH}/log/${Name}.

Evaluation

The results reported in the paper are calculated by the matlab script used in other SOTA, please see evaluation for details. Our evaluation code will print the metrics calculated by python code and save the shadow removed result images which will be used by the matlab script.

Results

  • Comparsion with SOTA, see paper for details.

Framework

  • Penumbra comparsion between ours and SP+M Net

Framework

  • Testing result

The testing results on dataset ISTD+, ISTD, SRD are:results

More details are coming soon

Bibtex

@inproceedings{fu2021auto,
      title={Auto-exposure Fusion for Single-image Shadow Removal}, 
      author={Lan Fu and Changqing Zhou and Qing Guo and Felix Juefei-Xu and Hongkai Yu and Wei Feng and Yang Liu and Song Wang},
      year={2021},
      booktitle={accepted to CVPR}
}
Owner
Qing Guo
Presidential Postdoctoral Fellow with the Nanyang Technological University. Research interests are computer vision, image processing, deep learning.
Qing Guo
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022