Bayesian Image Reconstruction using Deep Generative Models

Related tags

Deep Learningbrgm
Overview

         

diagram

Bayesian Image Reconstruction using Deep Generative Models

R. Marinescu, D. Moyer, P. Golland

For technical inquiries, please create a Github issue. For other inquiries, please contact Razvan Marinescu: [email protected]

For a demo of our BRGM model, see the Colab Notebook.

News

  • Feb 2021: Updated methods section in arXiv paper. We now start from the full Bayesian formulation, and derive the loss function from the MAP estimate (in appendix), and show the graphical model. Code didn't change in this update.
  • Dec 2020: Pre-trained models now available on MIT Dropbox.
  • Nov 2020: Uploaded article pre-print to arXiv.

Requirements

Our method, BRGM, builds on the StyleGAN2 Tensorflow codebase, so our requirements are the same as for StyleGAN2:

  • 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer.
  • TensorFlow 1.14 (Windows and Linux) or 1.15 (Linux only). TensorFlow 2.x is not supported. On Windows you need to use TensorFlow 1.14, as the standard 1.15 installation does not include necessary C++ headers.
  • One or more high-end NVIDIA GPUs with at least 12GB DRAM, NVIDIA drivers, CUDA 10.0 toolkit and cuDNN 7.5.

Installation from StyleGAN2 Tensorflow environment

If you already have a StyleGAN2 Tensorflow environment in Anaconda, you can clone that environment and additionally install the missing packages:

# clone environment stylegan2 into brgm
conda create --name brgm --clone stylegan2
source activate brgm

# install missing packages
conda install -c menpo opencv
conda install scikit-image==0.17.2

Installation from scratch with Anaconda

Create conda environment and install packages:

conda create -n "brgm" python=3.6.8 tensorflow-gpu==1.15.0 requests==2.22.0 Pillow==6.2.1 numpy==1.17.4 scikit-image==0.17.2

source activate brgm

conda install -c menpo opencv
conda install -c anaconda scipy

Clone this github repository:

git clone https://github.com/razvanmarinescu/brgm.git 

Image reconstruction with pre-trained StyleGAN2 generators

Super-resolution with pre-trained FFHQ generator, on a set of unseen input images (datasets/ffhq), with super-resolution factor x32. The tag argument is optional, and appends that string to the results folder:

python recon.py recon-real-images --input=datasets/ffhq --tag=ffhq \
 --network=dropbox:ffhq.pkl --recontype=super-resolution --superres-factor 32

Inpainting with pre-trained Xray generator (MIMIC III), using mask files from masks/1024x1024/ that match the image names exactly:

python recon.py recon-real-images --input=datasets/xray --tag=xray \
 --network=dropbox:xray.pkl --recontype=inpaint --masks=masks/1024x1024

Super-resolution on brain dataset with factor x8:

python recon.py recon-real-images --input=datasets/brains --tag=brains \
 --network=dropbox:brains.pkl --recontype=super-resolution --superres-factor 8

Running on your images

For running on your images, pass a new folder with .png/.jpg images to --input. For inpainting, you need to pass an additional masks folder to --masks, which contains a mask file for each image in the --input folder.

Training new StyleGAN2 generators

Follow the StyleGAN2 instructions for how to train a new generator network. In short, given a folder of images , you need to first prepare a TFRecord dataset, and then run the training code:

python dataset_tool.py create_from_images ~/datasets/my-custom-dataset ~/my-custom-images

python run_training.py --num-gpus=8 --data-dir=datasets --config=config-e --dataset=my-custom-dataset --mirror-augment=true
Owner
Razvan Valentin Marinescu
Postdoc Researcher working on medical imaging, machine learning and bayesian statistics.
Razvan Valentin Marinescu
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022